12a
0160
(K12a
0160
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 11 12 1 10 4 8 6 7
Solving Sequence
6,12
7 1 8 11
2,5
3 4 10 9
c
6
c
12
c
7
c
11
c
5
c
2
c
4
c
10
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
51
+ u
50
+ ··· + b u, u
51
u
50
+ ··· + a 1, u
52
+ 2u
51
+ ··· + 2u + 1i
I
u
2
= hb + u + 2, a u 1, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
51
+u
50
+· · · + b u, u
51
u
50
+· · · + a 1, u
52
+2u
51
+· · · + 2u+ 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
11
=
u
u
a
2
=
u
51
+ u
50
+ ··· + 7u + 1
u
51
u
50
+ ··· 4u
2
+ u
a
5
=
u
2
+ 1
u
2
a
3
=
u
50
+ u
49
+ ··· + 18u
2
+ 5u
u
51
32u
49
+ ··· + 2u + 1
a
4
=
2u
51
u
50
+ ··· 7u 1
3u
51
+ 2u
50
+ ··· + u + 1
a
10
=
u
7
4u
5
+ 4u
3
2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
9
=
u
12
+ 7u
10
17u
8
+ 18u
6
10u
4
+ u
2
+ 1
u
14
8u
12
+ 23u
10
28u
8
+ 12u
6
+ 2u
4
3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
51
+ 9u
50
+ ··· 9u + 11
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
52
+ 29u
51
+ ··· + 29u + 1
c
2
, c
4
u
52
3u
51
+ ··· 9u + 1
c
3
, c
9
u
52
u
51
+ ··· 4u + 4
c
5
, c
6
, c
7
c
11
, c
12
u
52
2u
51
+ ··· 2u + 1
c
8
, c
10
u
52
15u
51
+ ··· 248u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
52
9y
51
+ ··· 593y + 1
c
2
, c
4
y
52
29y
51
+ ··· 29y + 1
c
3
, c
9
y
52
15y
51
+ ··· 248y + 16
c
5
, c
6
, c
7
c
11
, c
12
y
52
66y
51
+ ··· + 6y + 1
c
8
, c
10
y
52
+ 41y
51
+ ··· 9504y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.002200 + 0.101685I
a = 0.620325 + 0.568001I
b = 0.338736 0.201694I
5.42587 + 0.91536I 15.8250 + 0.I
u = 1.002200 0.101685I
a = 0.620325 0.568001I
b = 0.338736 + 0.201694I
5.42587 0.91536I 15.8250 + 0.I
u = 0.900408 + 0.415514I
a = 0.686316 + 0.426160I
b = 1.32817 1.98079I
2.89703 + 10.97490I 6.84879 9.10557I
u = 0.900408 0.415514I
a = 0.686316 0.426160I
b = 1.32817 + 1.98079I
2.89703 10.97490I 6.84879 + 9.10557I
u = 0.993272 + 0.210152I
a = 0.306112 0.310737I
b = 1.09437 1.05834I
4.36145 + 5.53576I 12.8247 7.7042I
u = 0.993272 0.210152I
a = 0.306112 + 0.310737I
b = 1.09437 + 1.05834I
4.36145 5.53576I 12.8247 + 7.7042I
u = 0.887221 + 0.376671I
a = 0.216936 + 0.254530I
b = 0.512607 0.524064I
0.28073 + 6.02352I 10.12786 6.24694I
u = 0.887221 0.376671I
a = 0.216936 0.254530I
b = 0.512607 + 0.524064I
0.28073 6.02352I 10.12786 + 6.24694I
u = 0.853207 + 0.384206I
a = 0.903606 + 0.104965I
b = 1.14253 1.97773I
3.75080 4.74137I 5.53664 + 4.96484I
u = 0.853207 0.384206I
a = 0.903606 0.104965I
b = 1.14253 + 1.97773I
3.75080 + 4.74137I 5.53664 4.96484I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.825680 + 0.382316I
a = 0.111743 0.969230I
b = 1.57224 + 1.67207I
3.92292 + 1.91465I 5.33907 3.86780I
u = 0.825680 0.382316I
a = 0.111743 + 0.969230I
b = 1.57224 1.67207I
3.92292 1.91465I 5.33907 + 3.86780I
u = 0.768059 + 0.439344I
a = 0.195399 0.893583I
b = 1.17619 + 1.70576I
3.69972 + 3.78870I 5.61035 2.00055I
u = 0.768059 0.439344I
a = 0.195399 + 0.893583I
b = 1.17619 1.70576I
3.69972 3.78870I 5.61035 + 2.00055I
u = 0.869138 + 0.090566I
a = 0.624942 0.906814I
b = 0.124670 0.964759I
1.28982 1.61982I 10.04112 + 4.38556I
u = 0.869138 0.090566I
a = 0.624942 + 0.906814I
b = 0.124670 + 0.964759I
1.28982 + 1.61982I 10.04112 4.38556I
u = 0.778648 + 0.361263I
a = 0.381137 + 0.106397I
b = 0.541900 0.279638I
0.394378 0.492969I 9.04055 + 1.45710I
u = 0.778648 0.361263I
a = 0.381137 0.106397I
b = 0.541900 + 0.279638I
0.394378 + 0.492969I 9.04055 1.45710I
u = 0.803120
a = 0.675162
b = 2.05557
0.0369555 14.8580
u = 0.062250 + 0.639708I
a = 3.04229 + 0.33326I
b = 0.028753 0.273837I
5.82794 7.41916I 2.02402 + 6.23213I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.062250 0.639708I
a = 3.04229 0.33326I
b = 0.028753 + 0.273837I
5.82794 + 7.41916I 2.02402 6.23213I
u = 0.013286 + 0.599769I
a = 3.16045 + 0.60539I
b = 0.050264 0.426280I
6.37556 + 1.41175I 0.512224 0.772694I
u = 0.013286 0.599769I
a = 3.16045 0.60539I
b = 0.050264 + 0.426280I
6.37556 1.41175I 0.512224 + 0.772694I
u = 0.051648 + 0.589699I
a = 0.118187 + 0.761845I
b = 0.019107 + 0.393978I
2.57484 2.75018I 4.73313 + 3.20106I
u = 0.051648 0.589699I
a = 0.118187 0.761845I
b = 0.019107 0.393978I
2.57484 + 2.75018I 4.73313 3.20106I
u = 0.429505 + 0.363992I
a = 0.283846 + 0.092161I
b = 0.501430 + 0.658806I
0.985801 + 0.373941I 10.64681 + 0.40187I
u = 0.429505 0.363992I
a = 0.283846 0.092161I
b = 0.501430 0.658806I
0.985801 0.373941I 10.64681 0.40187I
u = 0.260485 + 0.467225I
a = 1.65751 + 0.54880I
b = 0.417669 0.022465I
0.44749 3.27943I 7.33672 + 8.28421I
u = 0.260485 0.467225I
a = 1.65751 0.54880I
b = 0.417669 + 0.022465I
0.44749 + 3.27943I 7.33672 8.28421I
u = 0.449135
a = 0.461577
b = 0.372331
0.706606 14.1070
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58988
a = 2.20327
b = 3.13699
7.80979 0
u = 1.62815 + 0.10007I
a = 2.77026 + 1.09581I
b = 3.78872 1.31091I
4.49371 1.83490I 0
u = 1.62815 0.10007I
a = 2.77026 1.09581I
b = 3.78872 + 1.31091I
4.49371 + 1.83490I 0
u = 1.65492 + 0.07803I
a = 0.986803 0.272171I
b = 1.64509 + 0.11104I
8.08427 + 2.03863I 0
u = 1.65492 0.07803I
a = 0.986803 + 0.272171I
b = 1.64509 0.11104I
8.08427 2.03863I 0
u = 1.66220 + 0.09221I
a = 3.12446 + 1.04099I
b = 4.21717 1.24397I
4.73033 3.67102I 0
u = 1.66220 0.09221I
a = 3.12446 1.04099I
b = 4.21717 + 1.24397I
4.73033 + 3.67102I 0
u = 1.67125
a = 3.25510
b = 4.37303
8.84251 0
u = 1.67019 + 0.09664I
a = 2.99043 2.84568I
b = 4.30768 + 4.47913I
5.04044 + 6.55656I 0
u = 1.67019 0.09664I
a = 2.99043 + 2.84568I
b = 4.30768 4.47913I
5.04044 6.55656I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.68080 + 0.01746I
a = 0.01213 2.15798I
b = 0.39566 + 3.61473I
10.32590 + 1.99807I 0
u = 1.68080 0.01746I
a = 0.01213 + 2.15798I
b = 0.39566 3.61473I
10.32590 1.99807I 0
u = 1.68130 + 0.09775I
a = 0.765995 0.522974I
b = 1.297310 + 0.421881I
9.25802 7.84981I 0
u = 1.68130 0.09775I
a = 0.765995 + 0.522974I
b = 1.297310 0.421881I
9.25802 + 7.84981I 0
u = 1.68310 + 0.11088I
a = 3.15694 2.48000I
b = 4.50686 + 3.86266I
6.1040 13.0204I 0
u = 1.68310 0.11088I
a = 3.15694 + 2.48000I
b = 4.50686 3.86266I
6.1040 + 13.0204I 0
u = 1.70835 + 0.02404I
a = 0.042019 + 0.436305I
b = 0.256089 1.030400I
15.0483 1.4053I 0
u = 1.70835 0.02404I
a = 0.042019 0.436305I
b = 0.256089 + 1.030400I
15.0483 + 1.4053I 0
u = 1.70818 + 0.04745I
a = 1.55667 1.83823I
b = 1.98030 + 3.09035I
13.9392 6.5232I 0
u = 1.70818 0.04745I
a = 1.55667 + 1.83823I
b = 1.98030 3.09035I
13.9392 + 6.5232I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.123626 + 0.224585I
a = 0.84430 + 2.89252I
b = 0.727029 0.150879I
1.62775 + 0.54260I 3.36212 1.40035I
u = 0.123626 0.224585I
a = 0.84430 2.89252I
b = 0.727029 + 0.150879I
1.62775 0.54260I 3.36212 + 1.40035I
10
II. I
u
2
= hb + u + 2, a u 1, u
2
u 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
7
=
1
u 1
a
1
=
u
u 1
a
8
=
u
u
a
11
=
u
u
a
2
=
u + 1
u 2
a
5
=
u
u + 1
a
3
=
1
1
a
4
=
1
1
a
10
=
u
u
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
8
, c
9
c
10
u
2
c
4
(u + 1)
2
c
5
, c
6
, c
7
u
2
u 1
c
11
, c
12
u
2
+ u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
8
, c
9
c
10
y
2
c
5
, c
6
, c
7
c
11
, c
12
y
2
3y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.381966
b = 1.38197
0.657974 3.00000
u = 1.61803
a = 2.61803
b = 3.61803
7.23771 3.00000
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
52
+ 29u
51
+ ··· + 29u + 1)
c
2
((u 1)
2
)(u
52
3u
51
+ ··· 9u + 1)
c
3
, c
9
u
2
(u
52
u
51
+ ··· 4u + 4)
c
4
((u + 1)
2
)(u
52
3u
51
+ ··· 9u + 1)
c
5
, c
6
, c
7
(u
2
u 1)(u
52
2u
51
+ ··· 2u + 1)
c
8
, c
10
u
2
(u
52
15u
51
+ ··· 248u + 16)
c
11
, c
12
(u
2
+ u 1)(u
52
2u
51
+ ··· 2u + 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
52
9y
51
+ ··· 593y + 1)
c
2
, c
4
((y 1)
2
)(y
52
29y
51
+ ··· 29y + 1)
c
3
, c
9
y
2
(y
52
15y
51
+ ··· 248y + 16)
c
5
, c
6
, c
7
c
11
, c
12
(y
2
3y + 1)(y
52
66y
51
+ ··· + 6y + 1)
c
8
, c
10
y
2
(y
52
+ 41y
51
+ ··· 9504y + 256)
16