12a
0164
(K12a
0164
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 12 10 11 4 8 7 1 6
Solving Sequence
3,9 4,5,12
6 2 1 8 10 11 7
c
3
c
5
c
2
c
1
c
8
c
9
c
11
c
7
c
4
, c
6
, c
10
, c
12
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h798299739247u
24
+ 2218887488039u
23
+ ··· + 14116099211116d 8843381349140,
364885635753u
24
+ 1117648334550u
23
+ ··· + 28232198422232c 44559223365168,
458802669672u
24
+ 367351897733u
23
+ ··· + 7058049605558b 1244576019090,
1687329917173u
24
1804551705088u
23
+ ··· + 28232198422232a 30643572770096,
u
25
+ 2u
24
+ ··· 16u 8i
I
u
2
= hd + 1, 2u
10
a + u
10
+ ··· 4a + 4, u
10
a + u
10
+ ··· + b 2, 3u
10
a + u
10
+ ··· + 2a
2
2a,
u
11
3u
10
+ 6u
9
7u
8
+ 7u
7
3u
6
2u
5
+ 8u
4
7u
3
+ 5u
2
2u + 2i
I
u
3
= hd + 1, u
7
a 3u
5
a + u
5
2u
3
a 3au + c + a + u, u
7
a + u
7
+ u
5
u
3
a + 2u
3
+ b + u 1,
2u
8
a 2u
8
+ ··· + 2a 2, u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1i
I
u
4
= hd + 1, 2u
7
c u
8
+ 2u
6
c + 2u
5
c u
6
+ 2u
4
c + u
5
+ 4u
3
c 2u
4
+ 2u
2
c + c
2
u
2
+ c + 2u,
u
7
u
5
2u
3
+ b u, u
5
+ a u, u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1i
I
u
5
= h2u
8
+ 2u
7
+ 4u
6
+ 4u
5
+ 6u
4
+ 4u
3
+ 4u
2
+ d + 4u, 2u
8
+ 2u
6
+ 4u
4
+ 2u
2
+ c + 1, u
7
u
5
2u
3
+ b u,
u
5
+ a u, u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1i
I
v
1
= ha, d + 1, c + a + 1, b 1, v + 1i
I
v
2
= hc, d + 1, b, a 1, v 1i
I
v
3
= ha, d + 1, c + a, b 1, v 1i
I
v
4
= ha, da c 1, dv + v 1, cv + av a + v, b 1i
* 8 irreducible components of dim
C
= 0, with total 95 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h7.98 × 10
11
u
24
+ 2.22 × 10
12
u
23
+ · · · + 1.41 × 10
13
d 8.84 ×
10
12
, 3.65×10
11
u
24
+1.12× 10
12
u
23
+· · ·+ 2.82 ×10
13
c 4.46 ×10
13
, 4.59×
10
11
u
24
+ 3.67 × 10
11
u
23
+ · · · + 7.06 × 10
12
b 1.24 × 10
12
, 1.69 × 10
12
u
24
1.80 × 10
12
u
23
+ · · · + 2.82 × 10
13
a 3.06 × 10
13
, u
25
+ 2u
24
+ · · · 16u 8i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
0.0597662u
24
+ 0.0639182u
23
+ ··· 0.107083u + 1.08541
0.0650042u
24
0.0520472u
23
+ ··· + 0.578878u + 0.176334
a
12
=
0.0129244u
24
0.0395877u
23
+ ··· + 0.145173u + 1.57831
0.0565524u
24
0.157188u
23
+ ··· 1.05131u + 0.626475
a
6
=
0.0747149u
24
+ 0.105730u
23
+ ··· + 0.724685u + 0.690091
0.00202430u
24
+ 0.0813992u
23
+ ··· + 0.686595u 0.973634
a
2
=
0.0597662u
24
+ 0.0639182u
23
+ ··· 0.107083u + 1.08541
0.0375166u
24
+ 0.0396045u
23
+ ··· 0.990575u 0.621247
a
1
=
0.0972828u
24
+ 0.103523u
23
+ ··· 1.09766u + 0.464165
0.0375166u
24
+ 0.0396045u
23
+ ··· 0.990575u 0.621247
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
0.0159383u
24
0.0332769u
23
+ ··· 0.0633916u + 1.31412
0.0587766u
24
0.139007u
23
+ ··· 0.788077u + 0.624033
a
7
=
0.0395277u
24
+ 0.0675081u
23
+ ··· + 0.598270u + 0.845409
0.0839809u
24
0.0749523u
23
+ ··· + 1.66833u + 0.315163
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
8058725701665
7058049605558
u
24
+
10736954342885
7058049605558
u
23
+ ···
38478403451674
3529024802779
u
29622418287164
3529024802779
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
25
+ 12u
24
+ ··· + 3u + 1
c
2
, c
4
, c
5
c
12
u
25
2u
24
+ ··· u + 1
c
3
, c
8
u
25
2u
24
+ ··· 16u + 8
c
6
, c
7
, c
10
u
25
+ 2u
24
+ ··· + 8u + 4
c
9
u
25
6u
24
+ ··· + 64u + 64
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
25
+ 8y
24
+ ··· 13y 1
c
2
, c
4
, c
5
c
12
y
25
12y
24
+ ··· + 3y 1
c
3
, c
8
y
25
+ 6y
24
+ ··· + 64y 64
c
6
, c
7
, c
10
y
25
22y
24
+ ··· + 88y 16
c
9
y
25
+ 14y
24
+ ··· + 43008y 4096
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.041130 + 0.234144I
a = 0.494693 + 0.148943I
b = 0.853442 0.558038I
c = 0.755058 + 0.911073I
d = 1.06504 + 1.52742I
3.14377 + 4.46824I 1.00511 6.27335I
u = 1.041130 0.234144I
a = 0.494693 0.148943I
b = 0.853442 + 0.558038I
c = 0.755058 0.911073I
d = 1.06504 1.52742I
3.14377 4.46824I 1.00511 + 6.27335I
u = 0.804646 + 0.457350I
a = 0.661026 + 0.327338I
b = 0.214886 0.601608I
c = 0.598042 + 0.576553I
d = 0.536475 + 0.287592I
2.41327 0.90505I 1.24488 0.76686I
u = 0.804646 0.457350I
a = 0.661026 0.327338I
b = 0.214886 + 0.601608I
c = 0.598042 0.576553I
d = 0.536475 0.287592I
2.41327 + 0.90505I 1.24488 + 0.76686I
u = 0.336133 + 1.048560I
a = 0.23291 1.77170I
b = 0.927060 + 0.554841I
c = 2.44072 0.00843I
d = 1.28789 + 1.63373I
0.70247 + 6.59785I 2.96140 9.56947I
u = 0.336133 1.048560I
a = 0.23291 + 1.77170I
b = 0.927060 0.554841I
c = 2.44072 + 0.00843I
d = 1.28789 1.63373I
0.70247 6.59785I 2.96140 + 9.56947I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.926049 + 0.758012I
a = 0.437271 + 0.092989I
b = 1.187970 0.465287I
c = 1.33714 + 0.95866I
d = 2.30915 + 1.75468I
7.68831 + 5.75962I 10.13195 4.49272I
u = 0.926049 0.758012I
a = 0.437271 0.092989I
b = 1.187970 + 0.465287I
c = 1.33714 0.95866I
d = 2.30915 1.75468I
7.68831 5.75962I 10.13195 + 4.49272I
u = 0.759240 + 0.251838I
a = 0.519076 0.093919I
b = 0.865432 + 0.337523I
c = 0.49147 1.32874I
d = 0.46170 2.46248I
2.09943 2.64913I 8.26724 + 7.08829I
u = 0.759240 0.251838I
a = 0.519076 + 0.093919I
b = 0.865432 0.337523I
c = 0.49147 + 1.32874I
d = 0.46170 + 2.46248I
2.09943 + 2.64913I 8.26724 7.08829I
u = 0.169266 + 0.764490I
a = 1.154810 + 0.812291I
b = 0.420684 0.407489I
c = 0.77118 + 1.56321I
d = 0.194809 0.625745I
1.62680 1.08260I 3.35440 + 3.89731I
u = 0.169266 0.764490I
a = 1.154810 0.812291I
b = 0.420684 + 0.407489I
c = 0.77118 1.56321I
d = 0.194809 + 0.625745I
1.62680 + 1.08260I 3.35440 3.89731I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.096683 + 1.217070I
a = 0.512583 1.088800I
b = 0.646064 + 0.751814I
c = 0.430370 0.686592I
d = 0.984764 + 0.859225I
8.85704 + 0.98974I 4.51267 2.53049I
u = 0.096683 1.217070I
a = 0.512583 + 1.088800I
b = 0.646064 0.751814I
c = 0.430370 + 0.686592I
d = 0.984764 0.859225I
8.85704 0.98974I 4.51267 + 2.53049I
u = 0.661369 + 1.057320I
a = 0.574734 + 0.631929I
b = 0.212320 0.866068I
c = 0.370547 + 0.605496I
d = 0.879125 0.241772I
4.06909 + 6.32284I 1.86961 4.09954I
u = 0.661369 1.057320I
a = 0.574734 0.631929I
b = 0.212320 + 0.866068I
c = 0.370547 0.605496I
d = 0.879125 + 0.241772I
4.06909 6.32284I 1.86961 + 4.09954I
u = 1.024310 + 0.754591I
a = 0.432415 0.103048I
b = 1.188320 + 0.521494I
c = 1.26644 0.88578I
d = 2.18015 1.59332I
3.22783 10.10170I 5.60475 + 6.88322I
u = 1.024310 0.754591I
a = 0.432415 + 0.103048I
b = 1.188320 0.521494I
c = 1.26644 + 0.88578I
d = 2.18015 + 1.59332I
3.22783 + 10.10170I 5.60475 6.88322I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.425565 + 1.220260I
a = 0.00331 + 1.51391I
b = 1.001440 0.660540I
c = 1.51553 0.69262I
d = 1.55274 1.36521I
6.70868 9.75196I 0.64851 + 8.69449I
u = 0.425565 1.220260I
a = 0.00331 1.51391I
b = 1.001440 + 0.660540I
c = 1.51553 + 0.69262I
d = 1.55274 + 1.36521I
6.70868 + 9.75196I 0.64851 8.69449I
u = 0.797713 + 1.033120I
a = 0.66380 + 1.63521I
b = 1.213130 0.525024I
c = 1.11526 2.93778I
d = 2.23603 1.53373I
6.80818 12.11480I 8.50713 + 8.67244I
u = 0.797713 1.033120I
a = 0.66380 1.63521I
b = 1.213130 + 0.525024I
c = 1.11526 + 2.93778I
d = 2.23603 + 1.53373I
6.80818 + 12.11480I 8.50713 8.67244I
u = 0.832592 + 1.087810I
a = 0.64807 1.52933I
b = 1.234910 + 0.554337I
c = 0.80559 + 2.69461I
d = 2.22655 + 1.42478I
2.1296 + 16.8657I 4.74649 10.33694I
u = 0.832592 1.087810I
a = 0.64807 + 1.52933I
b = 1.234910 0.554337I
c = 0.80559 2.69461I
d = 2.22655 1.42478I
2.1296 16.8657I 4.74649 + 10.33694I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.600838
a = 0.591322
b = 0.691126
c = 0.564782
d = 1.82889
1.26593 6.81200
10
II. I
u
2
= hd + 1, 2u
10
a + u
10
+ · · · 4a + 4, u
10
a + u
10
+ · · · + b
2, 3u
10
a + u
10
+ · · · + 2a
2
2a, u
11
3u
10
+ · · · 2u + 2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
a
u
10
a u
10
+ ··· u + 2
a
12
=
u
10
a
1
2
u
10
+ ··· + 2a 2
1
a
6
=
3
2
u
10
+
5
2
u
9
+ ··· +
1
2
u
2
3
2
u
u
10
+ 2u
9
3u
8
+ 2u
7
2u
6
u
5
+ 3u
4
4u
3
+ u
2
u + 1
a
2
=
a
u
10
a + u
10
+ ··· + u 2
a
1
=
u
10
a + u
10
+ ··· + a 2
u
10
a + u
10
+ ··· + u 2
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
3
2
u
10
+
9
2
u
9
+ ···
3
2
u + 3
2u
9
3u
8
+ 5u
7
3u
6
+ 4u
5
+ 3u
4
4u
3
+ 6u
2
+ 3
a
7
=
1
2
u
10
+
1
2
u
9
+ ··· +
1
2
u
2
+
1
2
u
u
10
+ 2u
9
3u
8
+ 3u
7
2u
6
+ 3u
4
2u
3
+ 2u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
10
8u
9
+ 10u
8
10u
7
+ 4u
6
4u
5
14u
4
+ 12u
3
6u
2
8u 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
22
+ 11u
21
+ ··· + 40u + 16
c
2
, c
4
, c
5
c
12
u
22
u
21
+ ··· 4u + 4
c
3
, c
8
(u
11
+ 3u
10
+ 6u
9
+ 7u
8
+ 7u
7
+ 3u
6
2u
5
8u
4
7u
3
5u
2
2u 2)
2
c
6
, c
7
, c
10
(u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 4u
6
5u
5
+ 3u
4
3u
3
5u
2
+ 3u 1)
2
c
9
(u
11
3u
10
+ ··· 16u + 4)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
22
3y
21
+ ··· 544y + 256
c
2
, c
4
, c
5
c
12
y
22
11y
21
+ ··· 40y + 16
c
3
, c
8
(y
11
+ 3y
10
+ ··· 16y 4)
2
c
6
, c
7
, c
10
(y
11
11y
10
+ ··· y 1)
2
c
9
(y
11
+ 7y
10
+ ··· + 24y 16)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.992754
a = 0.541424 + 0.181355I
b = 0.660661 0.556253I
c = 0.173971 + 0.420983I
d = 1.00000
3.69004 0.666830
u = 0.992754
a = 0.541424 0.181355I
b = 0.660661 + 0.556253I
c = 0.173971 0.420983I
d = 1.00000
3.69004 0.666830
u = 0.762686 + 0.875309I
a = 0.432041 + 0.071853I
b = 1.252300 0.374583I
c = 1.077570 0.728230I
d = 1.00000
7.89368 2.87937I 10.41286 + 3.23335I
u = 0.762686 + 0.875309I
a = 0.83899 + 1.92556I
b = 1.190170 0.436468I
c = 0.92410 + 2.27150I
d = 1.00000
7.89368 2.87937I 10.41286 + 3.23335I
u = 0.762686 0.875309I
a = 0.432041 0.071853I
b = 1.252300 + 0.374583I
c = 1.077570 + 0.728230I
d = 1.00000
7.89368 + 2.87937I 10.41286 3.23335I
u = 0.762686 0.875309I
a = 0.83899 1.92556I
b = 1.190170 + 0.436468I
c = 0.92410 2.27150I
d = 1.00000
7.89368 + 2.87937I 10.41286 3.23335I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.958422 + 0.661375I
a = 0.580062 0.402139I
b = 0.164345 + 0.807203I
c = 0.034579 0.677196I
d = 1.00000
0.20533 + 5.20915I 2.55774 3.72118I
u = 0.958422 + 0.661375I
a = 0.445846 + 0.101514I
b = 1.132380 0.485520I
c = 0.435696 + 0.436381I
d = 1.00000
0.20533 + 5.20915I 2.55774 3.72118I
u = 0.958422 0.661375I
a = 0.580062 + 0.402139I
b = 0.164345 0.807203I
c = 0.034579 + 0.677196I
d = 1.00000
0.20533 5.20915I 2.55774 + 3.72118I
u = 0.958422 0.661375I
a = 0.445846 0.101514I
b = 1.132380 + 0.485520I
c = 0.435696 0.436381I
d = 1.00000
0.20533 5.20915I 2.55774 + 3.72118I
u = 0.273627 + 1.210650I
a = 0.547051 + 0.920222I
b = 0.522674 0.802934I
c = 1.04176 1.12578I
d = 1.00000
8.10965 + 4.33574I 3.31243 3.68401I
u = 0.273627 + 1.210650I
a = 0.21367 1.45637I
b = 0.901383 + 0.672173I
c = 0.872371 0.074382I
d = 1.00000
8.10965 + 4.33574I 3.31243 3.68401I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.273627 1.210650I
a = 0.547051 0.920222I
b = 0.522674 + 0.802934I
c = 1.04176 + 1.12578I
d = 1.00000
8.10965 4.33574I 3.31243 + 3.68401I
u = 0.273627 1.210650I
a = 0.21367 + 1.45637I
b = 0.901383 0.672173I
c = 0.872371 + 0.074382I
d = 1.00000
8.10965 4.33574I 3.31243 + 3.68401I
u = 0.764438 + 1.080520I
a = 0.535931 0.594839I
b = 0.163987 + 0.927905I
c = 0.36336 + 1.80240I
d = 1.00000
1.11929 11.51290I 1.55919 + 7.44023I
u = 0.764438 + 1.080520I
a = 0.56921 + 1.60575I
b = 1.196120 0.553243I
c = 0.063151 + 0.595914I
d = 1.00000
1.11929 11.51290I 1.55919 + 7.44023I
u = 0.764438 1.080520I
a = 0.535931 + 0.594839I
b = 0.163987 0.927905I
c = 0.36336 1.80240I
d = 1.00000
1.11929 + 11.51290I 1.55919 7.44023I
u = 0.764438 1.080520I
a = 0.56921 1.60575I
b = 1.196120 + 0.553243I
c = 0.063151 0.595914I
d = 1.00000
1.11929 + 11.51290I 1.55919 7.44023I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215541 + 0.601634I
a = 0.466364 0.019525I
b = 1.140500 + 0.089613I
c = 1.154200 + 0.288451I
d = 1.00000
2.97495 + 0.92758I 6.11605 7.40073I
u = 0.215541 + 0.601634I
a = 2.14581 3.56073I
b = 0.875845 + 0.206022I
c = 2.01661 3.69343I
d = 1.00000
2.97495 + 0.92758I 6.11605 7.40073I
u = 0.215541 0.601634I
a = 0.466364 + 0.019525I
b = 1.140500 0.089613I
c = 1.154200 0.288451I
d = 1.00000
2.97495 0.92758I 6.11605 + 7.40073I
u = 0.215541 0.601634I
a = 2.14581 + 3.56073I
b = 0.875845 0.206022I
c = 2.01661 + 3.69343I
d = 1.00000
2.97495 0.92758I 6.11605 + 7.40073I
17
III. I
u
3
= hd + 1, u
7
a 3u
5
a + · · · + c + a, u
7
a + u
7
+ · · · + b 1, 2u
8
a
2u
8
+ · · · + 2a 2, u
9
+ u
8
+ · · · + u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
a
u
7
a u
7
u
5
+ u
3
a 2u
3
u + 1
a
12
=
u
7
a + 3u
5
a u
5
+ 2u
3
a + 3au a u
1
a
6
=
u
7
a + 2u
5
a u
5
+ u
3
a + 2au a u + 1
u
7
a + u
3
a + 1
a
2
=
a
u
7
a + u
7
+ u
5
u
3
a + u
2
a + 2u
3
+ u 1
a
1
=
u
7
a + u
7
+ u
5
u
3
a + u
2
a + 2u
3
+ a + u 1
u
7
a + u
7
+ u
5
u
3
a + u
2
a + 2u
3
+ u 1
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
u
8
a u
6
a u
7
u
4
a u
5
u
2
a u
3
+ au + u
2
u
u
8
a u
7
a + ··· + a 1
a
7
=
u
8
a + u
6
a + u
7
+ u
4
a + u
5
u
3
a + u
2
a + u
3
u
2
+ u
u
8
a + u
7
a + u
6
a + u
7
+ u
5
a + u
4
a + u
3
a + u
2
a + u
3
+ au u
2
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
4u
6
4u
5
4u
4
8u
3
4u
2
6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ 13u
17
+ ··· + 12u + 1
c
2
, c
4
, c
6
c
7
, c
10
u
18
+ u
17
+ ··· 2u 1
c
3
, c
8
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
2
c
5
, c
12
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
2
c
9
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
2
c
11
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
17y
17
+ ··· 156y + 1
c
2
, c
4
, c
6
c
7
, c
10
y
18
13y
17
+ ··· 12y + 1
c
3
, c
8
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
2
c
5
, c
12
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
2
c
9
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
2
c
11
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0.848261 1.052190I
b = 0.535620 + 0.576021I
c = 1.90798 + 1.04029I
d = 1.00000
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 + 0.966856I
a = 0.432824 + 0.012312I
b = 1.308540 0.065670I
c = 0.899132 0.444549I
d = 1.00000
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 0.966856I
a = 0.848261 + 1.052190I
b = 0.535620 0.576021I
c = 1.90798 1.04029I
d = 1.00000
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.140343 0.966856I
a = 0.432824 0.012312I
b = 1.308540 + 0.065670I
c = 0.899132 + 0.444549I
d = 1.00000
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.628449 + 0.875112I
a = 0.435786 + 0.058681I
b = 1.253840 0.303492I
c = 0.559107 + 0.407789I
d = 1.00000
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.628449 + 0.875112I
a = 0.55382 + 2.15000I
b = 1.112360 0.436175I
c = 0.109615 + 1.224890I
d = 1.00000
0.61694 2.45442I 2.32792 + 2.91298I
21
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.628449 0.875112I
a = 0.435786 0.058681I
b = 1.253840 + 0.303492I
c = 0.559107 0.407789I
d = 1.00000
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.628449 0.875112I
a = 0.55382 2.15000I
b = 1.112360 + 0.436175I
c = 0.109615 1.224890I
d = 1.00000
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.796005 + 0.733148I
a = 0.633756 + 0.458467I
b = 0.035822 0.749326I
c = 0.123475 + 0.714951I
d = 1.00000
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 + 0.733148I
a = 1.21946 2.08021I
b = 1.209730 + 0.357771I
c = 1.26364 2.41694I
d = 1.00000
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 0.733148I
a = 0.633756 0.458467I
b = 0.035822 + 0.749326I
c = 0.123475 0.714951I
d = 1.00000
4.37135 + 1.33617I 7.28409 0.70175I
u = 0.796005 0.733148I
a = 1.21946 + 2.08021I
b = 1.209730 0.357771I
c = 1.26364 + 2.41694I
d = 1.00000
4.37135 + 1.33617I 7.28409 0.70175I
22
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.728966 + 0.986295I
a = 0.583232 + 0.580415I
b = 0.138557 0.857281I
c = 0.41356 1.98115I
d = 1.00000
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 + 0.986295I
a = 0.422628 0.065267I
b = 1.311030 + 0.356898I
c = 1.023380 + 0.710048I
d = 1.00000
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 0.986295I
a = 0.583232 0.580415I
b = 0.138557 + 0.857281I
c = 0.41356 + 1.98115I
d = 1.00000
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.728966 0.986295I
a = 0.422628 + 0.065267I
b = 1.311030 0.356898I
c = 1.023380 0.710048I
d = 1.00000
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.512358
a = 0.777682
b = 0.285873
c = 0.168784
d = 1.00000
1.19845 8.65230
u = 0.512358
a = 8.94409
b = 1.11181
c = 8.78753
d = 1.00000
1.19845 8.65230
23
IV. I
u
4
= hd + 1, 2u
7
c u
8
+ · · · + c
2
+ c, u
7
u
5
2u
3
+ b u, u
5
+ a
u, u
9
+ u
8
+ · · · + u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
u
5
+ u
u
7
+ u
5
+ 2u
3
+ u
a
12
=
c
1
a
6
=
u
7
c + u
8
+ 2u
5
c + 2u
3
c + u
4
+ 2cu + 1
u
7
c + u
7
+ u
5
c + 2u
5
+ 2u
3
c + 2u
3
+ cu + 2u
a
2
=
u
5
+ u
u
5
u
3
u
a
1
=
u
3
u
5
u
3
u
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
u
8
c u
6
c u
6
u
4
c + c
u
8
c u
7
c u
8
u
6
c 2u
5
c u
6
u
4
c 2u
3
c u
4
2cu + c 1
a
7
=
u
2
c + c + 1
u
2
c + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
4u
6
4u
5
4u
4
8u
3
4u
2
6
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
2
c
2
, c
4
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
2
c
3
, c
8
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
2
c
5
, c
6
, c
7
c
10
, c
12
u
18
+ u
17
+ ··· 2u 1
c
9
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
2
c
11
u
18
+ 13u
17
+ ··· + 12u + 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
2
c
2
, c
4
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
2
c
3
, c
8
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
2
c
5
, c
6
, c
7
c
10
, c
12
y
18
13y
17
+ ··· 12y + 1
c
9
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
2
c
11
y
18
17y
17
+ ··· 156y + 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0.72777 + 1.63562I
b = 0.772920 0.510351I
c = 1.76865 + 0.20308I
d = 1.00000
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 + 0.966856I
a = 0.72777 + 1.63562I
b = 0.772920 0.510351I
c = 0.48884 + 1.87834I
d = 1.00000
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 0.966856I
a = 0.72777 1.63562I
b = 0.772920 + 0.510351I
c = 1.76865 0.20308I
d = 1.00000
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.140343 0.966856I
a = 0.72777 1.63562I
b = 0.772920 + 0.510351I
c = 0.48884 1.87834I
d = 1.00000
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.628449 + 0.875112I
a = 0.668544 0.575994I
b = 0.141484 + 0.739668I
c = 0.209391 0.831348I
d = 1.00000
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.628449 + 0.875112I
a = 0.668544 0.575994I
b = 0.141484 + 0.739668I
c = 0.62665 + 2.28784I
d = 1.00000
0.61694 2.45442I 2.32792 + 2.91298I
27
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.628449 0.875112I
a = 0.668544 + 0.575994I
b = 0.141484 0.739668I
c = 0.209391 + 0.831348I
d = 1.00000
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.628449 0.875112I
a = 0.668544 + 0.575994I
b = 0.141484 0.739668I
c = 0.62665 2.28784I
d = 1.00000
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.796005 + 0.733148I
a = 0.445546 0.080250I
b = 1.173910 + 0.391555I
c = 0.485156 0.408132I
d = 1.00000
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 + 0.733148I
a = 0.445546 0.080250I
b = 1.173910 + 0.391555I
c = 1.156890 + 0.759007I
d = 1.00000
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 0.733148I
a = 0.445546 + 0.080250I
b = 1.173910 0.391555I
c = 0.485156 + 0.408132I
d = 1.00000
4.37135 + 1.33617I 7.28409 0.70175I
u = 0.796005 0.733148I
a = 0.445546 + 0.080250I
b = 1.173910 0.391555I
c = 1.156890 0.759007I
d = 1.00000
4.37135 + 1.33617I 7.28409 0.70175I
28
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.728966 + 0.986295I
a = 0.61569 1.78625I
b = 1.172470 + 0.500383I
c = 0.058202 0.817156I
d = 1.00000
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 + 0.986295I
a = 0.61569 1.78625I
b = 1.172470 + 0.500383I
c = 0.73020 2.13952I
d = 1.00000
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 0.986295I
a = 0.61569 + 1.78625I
b = 1.172470 0.500383I
c = 0.058202 + 0.817156I
d = 1.00000
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.728966 0.986295I
a = 0.61569 + 1.78625I
b = 1.172470 0.500383I
c = 0.73020 + 2.13952I
d = 1.00000
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.512358
a = 0.547665
b = 0.825933
c = 0.316966
d = 1.00000
1.19845 8.65230
u = 0.512358
a = 0.547665
b = 0.825933
c = 2.00921
d = 1.00000
1.19845 8.65230
29
V. I
u
5
= h2u
8
+ 2u
7
+ · · · + d + 4u, 2u
8
+ 2u
6
+ · · · + c + 1, u
7
u
5
2u
3
+
b u, u
5
+ a u, u
9
+ u
8
+ · · · + u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
u
5
+ u
u
7
+ u
5
+ 2u
3
+ u
a
12
=
2u
8
2u
6
4u
4
2u
2
1
2u
8
2u
7
4u
6
4u
5
6u
4
4u
3
4u
2
4u
a
6
=
u
7
+ 2u
6
+ 2u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u
2u
8
+ u
7
+ 4u
6
+ u
5
+ 6u
4
+ 2u
3
+ 4u
2
+ u + 2
a
2
=
u
5
+ u
u
5
u
3
u
a
1
=
u
3
u
5
u
3
u
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
u
8
u
6
3u
4
2u
2
1
u
8
u
7
3u
6
2u
5
5u
4
2u
3
4u
2
2u 1
a
7
=
2u
6
+ 2u
4
+ 3u
2
+ 1
2u
8
+ 4u
6
+ 6u
4
+ 5u
2
+ 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
4u
6
4u
5
4u
4
8u
3
4u
2
6
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
2
, c
4
, c
5
c
6
, c
7
, c
10
c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
3
, c
8
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
9
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
2
, c
4
, c
5
c
6
, c
7
, c
10
c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
3
, c
8
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
9
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0.72777 + 1.63562I
b = 0.772920 0.510351I
c = 1.76992 + 1.63785I
d = 0.75135 1.48568I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.140343 0.966856I
a = 0.72777 1.63562I
b = 0.772920 + 0.510351I
c = 1.76992 1.63785I
d = 0.75135 + 1.48568I
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.628449 + 0.875112I
a = 0.668544 0.575994I
b = 0.141484 + 0.739668I
c = 0.472416 0.682058I
d = 0.714469 + 0.176194I
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.628449 0.875112I
a = 0.668544 + 0.575994I
b = 0.141484 0.739668I
c = 0.472416 + 0.682058I
d = 0.714469 0.176194I
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.796005 + 0.733148I
a = 0.445546 0.080250I
b = 1.173910 + 0.391555I
c = 1.44301 1.09794I
d = 2.50189 2.05286I
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.796005 0.733148I
a = 0.445546 + 0.080250I
b = 1.173910 0.391555I
c = 1.44301 + 1.09794I
d = 2.50189 + 2.05286I
4.37135 + 1.33617I 7.28409 0.70175I
33
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.728966 + 0.986295I
a = 0.61569 1.78625I
b = 1.172470 + 0.500383I
c = 1.72233 + 3.04233I
d = 2.17857 + 1.68557I
3.59813 + 7.08493I 5.57680 5.91335I
u = 0.728966 0.986295I
a = 0.61569 + 1.78625I
b = 1.172470 0.500383I
c = 1.72233 3.04233I
d = 2.17857 1.68557I
3.59813 7.08493I 5.57680 + 5.91335I
u = 0.512358
a = 0.547665
b = 0.825933
c = 1.84635
d = 4.29257
1.19845 8.65230
34
VI. I
v
1
= ha, d + 1, c + a + 1, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
5
=
0
1
a
12
=
1
1
a
6
=
1
0
a
2
=
1
1
a
1
=
0
1
a
8
=
1
0
a
10
=
1
0
a
11
=
1
0
a
7
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
11
u 1
c
3
, c
6
, c
7
c
8
, c
9
, c
10
u
c
4
, c
12
u + 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
11
, c
12
y 1
c
3
, c
6
, c
7
c
8
, c
9
, c
10
y
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
3.28987 12.0000
38
VII. I
v
2
= hc, d + 1, b, a 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
5
=
1
0
a
12
=
0
1
a
6
=
1
1
a
2
=
1
0
a
1
=
1
0
a
8
=
1
0
a
10
=
1
0
a
11
=
1
1
a
7
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
, c
9
u
c
5
, c
6
, c
7
u + 1
c
10
, c
11
, c
12
u 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
, c
9
y
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y 1
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
0 0
42
VIII. I
v
3
= ha, d + 1, c + a, b 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
5
=
0
1
a
12
=
0
1
a
6
=
0
1
a
2
=
1
1
a
1
=
0
1
a
8
=
1
0
a
10
=
1
0
a
11
=
0
1
a
7
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
u 1
c
3
, c
5
, c
8
c
9
, c
11
, c
12
u
c
4
, c
6
, c
7
u + 1
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
10
y 1
c
3
, c
5
, c
8
c
9
, c
11
, c
12
y
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 0
d = 1.00000
0 0
46
IX. I
v
4
= ha, da c 1, dv + v 1, cv + av a + v, b 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
1
a
12
=
1
d
a
6
=
1
d + 1
a
2
=
1
1
a
1
=
0
1
a
8
=
v
0
a
10
=
v
0
a
11
=
1
d + 1
a
7
=
v 1
d + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = d
2
+ v
2
+ 2d 7
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
47
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
1.64493 9.16360 0.46474I
48
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
2
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
3
· (u
18
+ 13u
17
+ ··· + 12u + 1)(u
22
+ 11u
21
+ ··· + 40u + 16)
· (u
25
+ 12u
24
+ ··· + 3u + 1)
c
2
u(u 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
3
· (u
18
+ u
17
+ ··· 2u 1)(u
22
u
21
+ ··· 4u + 4)
· (u
25
2u
24
+ ··· u + 1)
c
3
, c
8
u
3
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
5
· (u
11
+ 3u
10
+ 6u
9
+ 7u
8
+ 7u
7
+ 3u
6
2u
5
8u
4
7u
3
5u
2
2u 2)
2
· (u
25
2u
24
+ ··· 16u + 8)
c
4
u(u + 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
3
· (u
18
+ u
17
+ ··· 2u 1)(u
22
u
21
+ ··· 4u + 4)
· (u
25
2u
24
+ ··· u + 1)
c
5
, c
12
u(u 1)(u + 1)(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
3
· (u
18
+ u
17
+ ··· 2u 1)(u
22
u
21
+ ··· 4u + 4)
· (u
25
2u
24
+ ··· u + 1)
c
6
, c
7
u(u + 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 4u
6
5u
5
+ 3u
4
3u
3
5u
2
+ 3u 1)
2
· ((u
18
+ u
17
+ ··· 2u 1)
2
)(u
25
+ 2u
24
+ ··· + 8u + 4)
c
9
u
3
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
5
· ((u
11
3u
10
+ ··· 16u + 4)
2
)(u
25
6u
24
+ ··· + 64u + 64)
c
10
u(u 1)
2
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
11
+ u
10
5u
9
4u
8
+ 9u
7
+ 4u
6
5u
5
+ 3u
4
3u
3
5u
2
+ 3u 1)
2
· ((u
18
+ u
17
+ ··· 2u 1)
2
)(u
25
+ 2u
24
+ ··· + 8u + 4)
49
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
y(y 1)
2
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
3
· (y
18
17y
17
+ ··· 156y + 1)(y
22
3y
21
+ ··· 544y + 256)
· (y
25
+ 8y
24
+ ··· 13y 1)
c
2
, c
4
, c
5
c
12
y(y 1)
2
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
3
· (y
18
13y
17
+ ··· 12y + 1)(y
22
11y
21
+ ··· 40y + 16)
· (y
25
12y
24
+ ··· + 3y 1)
c
3
, c
8
y
3
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
5
· ((y
11
+ 3y
10
+ ··· 16y 4)
2
)(y
25
+ 6y
24
+ ··· + 64y 64)
c
6
, c
7
, c
10
y(y 1)
2
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· ((y
11
11y
10
+ ··· y 1)
2
)(y
18
13y
17
+ ··· 12y + 1)
2
· (y
25
22y
24
+ ··· + 88y 16)
c
9
y
3
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
5
· ((y
11
+ 7y
10
+ ··· + 24y 16)
2
)(y
25
+ 14y
24
+ ··· + 43008y 4096)
50