12a
0165
(K12a
0165
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 12 11 10 4 8 7 1 6
Solving Sequence
4,8
9 10
1,3
2 5 7 11 6 12
c
8
c
9
c
3
c
1
c
4
c
7
c
10
c
6
c
12
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h4u
18
+ 9u
17
+ ··· + b 5, 3u
18
+ 3u
17
+ ··· + 2a 5u, u
19
+ 3u
18
+ ··· 2u 2i
I
u
2
= hu
15
a + 3u
16
+ ··· a + 1, u
14
a u
15
+ ··· a + 2, u
17
u
16
+ ··· + u 1i
I
v
1
= ha, b 1, v + 1i
* 3 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4u
18
+9u
17
+· · ·+b5, 3u
18
+3u
17
+· · ·+2a5u, u
19
+3u
18
+· · ·−2u2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
3
2
u
18
3
2
u
17
+ ··· +
1
2
u
2
+
5
2
u
4u
18
9u
17
+ ··· + 5u + 5
a
3
=
u
u
3
+ u
a
2
=
1
2
u
18
1
2
u
17
+ ··· +
1
2
u
2
+
3
2
u
u
18
2u
17
+ ··· + 2u + 1
a
5
=
1
2
u
18
+
3
2
u
17
+ ···
1
2
u 1
u
18
u
16
+ ··· + 2u 1
a
7
=
u
4
+ u
2
+ 1
u
4
a
11
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
6
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
8
+ 2u
4
a
12
=
1
2
u
18
+
1
2
u
17
+ ···
1
2
u + 1
u
18
+ 2u
17
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
18
+ 2u
16
6u
15
+ 4u
14
12u
13
+ 2u
12
28u
11
2u
10
24u
9
2u
8
28u
7
12u
6
8u
5
12u
4
6u
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
19
+ 11u
18
+ ··· + 3u + 1
c
2
, c
4
, c
5
c
12
u
19
u
18
+ ··· u + 1
c
3
, c
8
u
19
3u
18
+ ··· 2u + 2
c
6
, c
7
, c
9
c
10
u
19
3u
18
+ ··· 11u
2
+ 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
19
3y
18
+ ··· + 11y 1
c
2
, c
4
, c
5
c
12
y
19
11y
18
+ ··· + 3y 1
c
3
, c
8
y
19
+ 3y
18
+ ··· + 11y
2
4
c
6
, c
7
, c
9
c
10
y
19
+ 23y
18
+ ··· + 88y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.347446 + 0.933456I
a = 0.171985 0.194773I
b = 0.969269 + 0.134564I
0.10929 + 6.34273I 3.77049 10.42741I
u = 0.347446 0.933456I
a = 0.171985 + 0.194773I
b = 0.969269 0.134564I
0.10929 6.34273I 3.77049 + 10.42741I
u = 0.532414 + 0.771389I
a = 0.511523 + 0.882342I
b = 0.007510 + 0.817176I
0.41325 2.04302I 2.62456 + 3.49236I
u = 0.532414 0.771389I
a = 0.511523 0.882342I
b = 0.007510 0.817176I
0.41325 + 2.04302I 2.62456 3.49236I
u = 0.838741 + 0.661261I
a = 0.960098 0.906788I
b = 0.480763 0.879178I
6.95459 + 5.11431I 11.79581 4.98965I
u = 0.838741 0.661261I
a = 0.960098 + 0.906788I
b = 0.480763 + 0.879178I
6.95459 5.11431I 11.79581 + 4.98965I
u = 0.009736 + 0.866710I
a = 0.023776 + 0.565154I
b = 0.632690 + 0.365808I
1.96169 1.46588I 2.04992 + 4.47072I
u = 0.009736 0.866710I
a = 0.023776 0.565154I
b = 0.632690 0.365808I
1.96169 + 1.46588I 2.04992 4.47072I
u = 0.674488 + 0.956724I
a = 0.561349 1.206360I
b = 0.041367 1.175230I
5.94319 10.65650I 9.44590 + 9.96875I
u = 0.674488 0.956724I
a = 0.561349 + 1.206360I
b = 0.041367 + 1.175230I
5.94319 + 10.65650I 9.44590 9.96875I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.722854 + 0.279055I
a = 0.268290 0.582437I
b = 0.042347 + 0.263428I
2.21379 2.62773I 8.93554 + 6.59868I
u = 0.722854 0.279055I
a = 0.268290 + 0.582437I
b = 0.042347 0.263428I
2.21379 + 2.62773I 8.93554 6.59868I
u = 0.902022 + 0.935041I
a = 1.22720 + 1.31378I
b = 0.59682 + 2.85556I
9.32638 + 3.32620I 5.56917 2.29363I
u = 0.902022 0.935041I
a = 1.22720 1.31378I
b = 0.59682 2.85556I
9.32638 3.32620I 5.56917 + 2.29363I
u = 0.954578 + 0.916463I
a = 2.01023 1.04776I
b = 0.44541 3.24116I
17.2005 6.5526I 12.03748 + 3.63371I
u = 0.954578 0.916463I
a = 2.01023 + 1.04776I
b = 0.44541 + 3.24116I
17.2005 + 6.5526I 12.03748 3.63371I
u = 0.914047 + 0.984596I
a = 0.93853 2.07020I
b = 1.52424 3.36626I
16.9728 + 13.4124I 11.60113 8.01307I
u = 0.914047 0.984596I
a = 0.93853 + 2.07020I
b = 1.52424 + 3.36626I
16.9728 13.4124I 11.60113 + 8.01307I
u = 0.610080
a = 0.816899
b = 0.404798
1.23828 6.53970
6
II.
I
u
2
= hu
15
a+3u
16
+· · ·a+1, u
14
au
15
+· · ·a+2, u
17
u
16
+· · ·+u1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
10
=
u
2
+ 1
u
2
a
1
=
a
1
2
u
15
a
3
2
u
16
+ ··· +
1
2
a
1
2
a
3
=
u
u
3
+ u
a
2
=
1
2
u
16
a
1
2
u
16
+ ··· +
3
2
a +
3
2
u
u
15
a 3u
16
+ ··· + a 1
a
5
=
1
2
u
15
a
3
2
u
16
+ ···
1
2
a
1
2
1
2
u
15
a
3
2
u
16
+ ··· +
1
2
a
1
2
a
7
=
u
4
+ u
2
+ 1
u
4
a
11
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
6
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
8
+ 2u
4
a
12
=
1
2
u
15
a
1
2
u
16
+ ··· +
3
2
a +
3
2
1
2
u
16
a 3u
16
+ ··· + a
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
15
+ 4u
14
8u
13
+ 4u
12
28u
11
+ 20u
10
36u
9
+ 16u
8
56u
7
+ 28u
6
40u
5
+ 16u
4
28u
3
+ 16u
2
12u 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
34
+ 21u
33
+ ··· + 12u + 1
c
2
, c
4
, c
5
c
12
u
34
u
33
+ ··· 6u
2
+ 1
c
3
, c
8
(u
17
+ u
16
+ ··· + u + 1)
2
c
6
, c
7
, c
9
c
10
(u
17
3u
16
+ ··· 3u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
34
17y
33
+ ··· 140y + 1
c
2
, c
4
, c
5
c
12
y
34
21y
33
+ ··· 12y + 1
c
3
, c
8
(y
17
+ 3y
16
+ ··· 3y 1)
2
c
6
, c
7
, c
9
c
10
(y
17
+ 23y
16
+ ··· + 9y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.672243 + 0.786311I
a = 1.082100 0.898592I
b = 1.31901 1.59889I
7.18216 2.50454I 12.07700 + 3.85927I
u = 0.672243 + 0.786311I
a = 1.00326 1.62412I
b = 0.608646 0.931855I
7.18216 2.50454I 12.07700 + 3.85927I
u = 0.672243 0.786311I
a = 1.082100 + 0.898592I
b = 1.31901 + 1.59889I
7.18216 + 2.50454I 12.07700 3.85927I
u = 0.672243 0.786311I
a = 1.00326 + 1.62412I
b = 0.608646 + 0.931855I
7.18216 + 2.50454I 12.07700 3.85927I
u = 0.706998 + 0.642933I
a = 0.807968 + 0.702661I
b = 0.524414 + 1.168210I
3.89702 1.19537I 8.59794 + 0.58854I
u = 0.706998 + 0.642933I
a = 0.67143 1.25663I
b = 0.057241 0.574590I
3.89702 1.19537I 8.59794 + 0.58854I
u = 0.706998 0.642933I
a = 0.807968 0.702661I
b = 0.524414 1.168210I
3.89702 + 1.19537I 8.59794 0.58854I
u = 0.706998 0.642933I
a = 0.67143 + 1.25663I
b = 0.057241 + 0.574590I
3.89702 + 1.19537I 8.59794 0.58854I
u = 0.616947 + 0.891729I
a = 0.670001 0.916287I
b = 0.668676 1.015290I
3.09054 + 6.12281I 6.33796 6.84601I
u = 0.616947 + 0.891729I
a = 0.599055 + 1.125390I
b = 0.432694 + 1.039890I
3.09054 + 6.12281I 6.33796 6.84601I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.616947 0.891729I
a = 0.670001 + 0.916287I
b = 0.668676 + 1.015290I
3.09054 6.12281I 6.33796 + 6.84601I
u = 0.616947 0.891729I
a = 0.599055 1.125390I
b = 0.432694 1.039890I
3.09054 6.12281I 6.33796 + 6.84601I
u = 0.208716 + 0.869278I
a = 0.072000 + 0.778055I
b = 0.256802 + 0.282630I
1.42740 2.28997I 0.30509 + 4.71022I
u = 0.208716 + 0.869278I
a = 0.172514 + 0.206222I
b = 1.016220 + 0.354488I
1.42740 2.28997I 0.30509 + 4.71022I
u = 0.208716 0.869278I
a = 0.072000 0.778055I
b = 0.256802 0.282630I
1.42740 + 2.28997I 0.30509 4.71022I
u = 0.208716 0.869278I
a = 0.172514 0.206222I
b = 1.016220 0.354488I
1.42740 + 2.28997I 0.30509 4.71022I
u = 0.929005 + 0.919626I
a = 1.29872 + 1.27388I
b = 0.39727 + 3.05185I
13.30230 + 1.56927I 8.91940 0.65050I
u = 0.929005 + 0.919626I
a = 1.96214 1.14150I
b = 0.17796 3.10658I
13.30230 + 1.56927I 8.91940 0.65050I
u = 0.929005 0.919626I
a = 1.29872 1.27388I
b = 0.39727 3.05185I
13.30230 1.56927I 8.91940 + 0.65050I
u = 0.929005 0.919626I
a = 1.96214 + 1.14150I
b = 0.17796 + 3.10658I
13.30230 1.56927I 8.91940 + 0.65050I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.920829 + 0.944574I
a = 1.09183 2.00211I
b = 1.03641 3.68580I
17.2424 + 3.3872I 12.08288 2.32417I
u = 0.920829 + 0.944574I
a = 2.02633 1.22733I
b = 0.07151 3.28042I
17.2424 + 3.3872I 12.08288 2.32417I
u = 0.920829 0.944574I
a = 1.09183 + 2.00211I
b = 1.03641 + 3.68580I
17.2424 3.3872I 12.08288 + 2.32417I
u = 0.920829 0.944574I
a = 2.02633 + 1.22733I
b = 0.07151 + 3.28042I
17.2424 3.3872I 12.08288 + 2.32417I
u = 0.905075 + 0.964023I
a = 1.23229 + 1.39113I
b = 0.84889 + 2.93758I
13.1567 8.3174I 8.64033 + 5.18877I
u = 0.905075 + 0.964023I
a = 0.98957 1.99266I
b = 1.20467 3.37460I
13.1567 8.3174I 8.64033 + 5.18877I
u = 0.905075 0.964023I
a = 1.23229 1.39113I
b = 0.84889 2.93758I
13.1567 + 8.3174I 8.64033 5.18877I
u = 0.905075 0.964023I
a = 0.98957 + 1.99266I
b = 1.20467 + 3.37460I
13.1567 + 8.3174I 8.64033 5.18877I
u = 0.231740 + 0.588876I
a = 0.776006 + 0.665775I
b = 1.69903 + 1.15771I
3.00025 + 0.92655I 6.49670 7.34204I
u = 0.231740 + 0.588876I
a = 0.09148 2.42444I
b = 0.307065 + 0.314242I
3.00025 + 0.92655I 6.49670 7.34204I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.231740 0.588876I
a = 0.776006 0.665775I
b = 1.69903 1.15771I
3.00025 0.92655I 6.49670 + 7.34204I
u = 0.231740 0.588876I
a = 0.09148 + 2.42444I
b = 0.307065 0.314242I
3.00025 0.92655I 6.49670 + 7.34204I
u = 0.522950
a = 1.21130
b = 0.271850
1.19234 8.30570
u = 0.522950
a = 0.527647
b = 0.499095
1.19234 8.30570
13
III. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
1
0
a
9
=
1
0
a
10
=
1
0
a
1
=
0
1
a
3
=
1
0
a
2
=
1
1
a
5
=
0
1
a
7
=
1
0
a
11
=
1
0
a
6
=
1
0
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
11
u 1
c
3
, c
6
, c
7
c
8
, c
9
, c
10
u
c
4
, c
12
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
11
, c
12
y 1
c
3
, c
6
, c
7
c
8
, c
9
, c
10
y
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
(u 1)(u
19
+ 11u
18
+ ··· + 3u + 1)(u
34
+ 21u
33
+ ··· + 12u + 1)
c
2
, c
5
(u 1)(u
19
u
18
+ ··· u + 1)(u
34
u
33
+ ··· 6u
2
+ 1)
c
3
, c
8
u(u
17
+ u
16
+ ··· + u + 1)
2
(u
19
3u
18
+ ··· 2u + 2)
c
4
, c
12
(u + 1)(u
19
u
18
+ ··· u + 1)(u
34
u
33
+ ··· 6u
2
+ 1)
c
6
, c
7
, c
9
c
10
u(u
17
3u
16
+ ··· 3u + 1)
2
(u
19
3u
18
+ ··· 11u
2
+ 4)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y 1)(y
19
3y
18
+ ··· + 11y 1)(y
34
17y
33
+ ··· 140y + 1)
c
2
, c
4
, c
5
c
12
(y 1)(y
19
11y
18
+ ··· + 3y 1)(y
34
21y
33
+ ··· 12y + 1)
c
3
, c
8
y(y
17
+ 3y
16
+ ··· 3y 1)
2
(y
19
+ 3y
18
+ ··· + 11y
2
4)
c
6
, c
7
, c
9
c
10
y(y
17
+ 23y
16
+ ··· + 9y 1)
2
(y
19
+ 23y
18
+ ··· + 88y 16)
19