12a
0168
(K12a
0168
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 12 1 11 10 4 8 7 6
Solving Sequence
1,7
6 12
2,5
3 4 11 8 10 9
c
6
c
12
c
5
c
2
c
4
c
11
c
7
c
10
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
28
+ 10u
26
+ ··· + 6u
2
+ b, u
34
+ u
33
+ ··· + a 8u, u
35
2u
34
+ ··· u + 1i
I
u
2
= hu
5
u
3
+ b u, u
3
+ a,
u
15
5u
13
u
12
+ 10u
11
+ 4u
10
6u
9
6u
8
7u
7
+ u
6
+ 11u
5
+ 5u
4
u
3
3u
2
3u 1i
I
u
3
= hb + 1, a 1, u + 1i
* 3 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
28
+10u
26
+· · ·+6u
2
+b, u
34
+u
33
+· · ·+a8u, u
35
2u
34
+· · ·u+1i
(i) Arc colorings
a
1
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
2
=
u
34
u
33
+ ··· + 20u
2
+ 8u
u
28
10u
26
+ ··· 16u
3
6u
2
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
33
+ 13u
31
+ ··· + 28u
2
+ 8u
u
34
+ u
33
+ ··· u + 1
a
4
=
u
34
13u
32
+ ··· 7u 1
u
34
u
33
+ ··· + u 1
a
11
=
u
3
2u
u
3
+ u
a
8
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
10
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
a
9
=
u
12
5u
10
+ 9u
8
4u
6
6u
4
+ 5u
2
+ 1
u
12
+ 4u
10
6u
8
+ 2u
6
+ 3u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
33
+ 4u
32
+ 26u
31
48u
30
154u
29
+ 252u
28
+ 536u
27
724u
26
1162u
25
+ 1096u
24
+ 1448u
23
336u
22
448u
21
1792u
20
1708u
19
+
2984u
18
+ 2926u
17
836u
16
1400u
15
2388u
14
1280u
13
+ 2228u
12
+ 1868u
11
+
404u
10
328u
9
1140u
8
596u
7
+ 60u
6
+ 196u
5
+ 236u
4
+ 100u
3
+ 28u
2
6u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 20u
34
+ ··· + 3u + 1
c
2
, c
4
u
35
2u
34
+ ··· + 3u 1
c
3
, c
9
u
35
+ 2u
34
+ ··· 2u 2
c
5
, c
6
, c
12
u
35
+ 2u
34
+ ··· u 1
c
7
, c
8
, c
10
c
11
u
35
6u
34
+ ··· + 8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
8y
34
+ ··· + 35y 1
c
2
, c
4
y
35
20y
34
+ ··· + 3y 1
c
3
, c
9
y
35
6y
34
+ ··· + 8y 4
c
5
, c
6
, c
12
y
35
28y
34
+ ··· 13y 1
c
7
, c
8
, c
10
c
11
y
35
+ 42y
34
+ ··· 136y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.029628 + 0.934102I
a = 3.61963 + 0.54565I
b = 4.19510 0.71037I
14.7947 8.3253I 0.91975 + 5.31258I
u = 0.029628 0.934102I
a = 3.61963 0.54565I
b = 4.19510 + 0.71037I
14.7947 + 8.3253I 0.91975 5.31258I
u = 0.004692 + 0.923942I
a = 3.64319 + 0.66960I
b = 4.10450 1.08656I
14.9356 + 1.5707I 1.236325 0.670783I
u = 0.004692 0.923942I
a = 3.64319 0.66960I
b = 4.10450 + 1.08656I
14.9356 1.5707I 1.236325 + 0.670783I
u = 1.140910 + 0.226464I
a = 0.0410600 + 0.0527107I
b = 0.796518 + 0.135470I
1.16280 0.99874I 6.67808 + 0.23087I
u = 1.140910 0.226464I
a = 0.0410600 0.0527107I
b = 0.796518 0.135470I
1.16280 + 0.99874I 6.67808 0.23087I
u = 1.211370 + 0.063006I
a = 0.024848 + 0.395141I
b = 0.93931 1.68300I
2.16189 1.54722I 7.54202 + 4.01814I
u = 1.211370 0.063006I
a = 0.024848 0.395141I
b = 0.93931 + 1.68300I
2.16189 + 1.54722I 7.54202 4.01814I
u = 0.139390 + 0.744521I
a = 2.63405 + 0.70052I
b = 1.81184 0.03604I
4.64613 6.27110I 0.28899 + 7.66392I
u = 0.139390 0.744521I
a = 2.63405 0.70052I
b = 1.81184 + 0.03604I
4.64613 + 6.27110I 0.28899 7.66392I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.233890 + 0.279365I
a = 0.14304 + 1.43122I
b = 2.18803 1.44880I
1.47413 4.67753I 3.26707 + 4.95430I
u = 1.233890 0.279365I
a = 0.14304 1.43122I
b = 2.18803 + 1.44880I
1.47413 + 4.67753I 3.26707 4.95430I
u = 1.276390 + 0.259219I
a = 0.047693 + 0.240818I
b = 0.432237 + 0.227863I
2.43611 + 5.45580I 9.29163 6.05568I
u = 1.276390 0.259219I
a = 0.047693 0.240818I
b = 0.432237 0.227863I
2.43611 5.45580I 9.29163 + 6.05568I
u = 1.302250 + 0.054350I
a = 0.287821 0.006470I
b = 0.723841 + 0.741201I
6.06693 + 0.68963I 14.6543 0.4108I
u = 1.302250 0.054350I
a = 0.287821 + 0.006470I
b = 0.723841 0.741201I
6.06693 0.68963I 14.6543 + 0.4108I
u = 1.314130 + 0.126505I
a = 0.477565 + 0.637528I
b = 0.035059 0.928052I
5.18133 + 4.97391I 11.84206 7.53779I
u = 1.314130 0.126505I
a = 0.477565 0.637528I
b = 0.035059 + 0.928052I
5.18133 4.97391I 11.84206 + 7.53779I
u = 0.028586 + 0.673943I
a = 2.75743 + 1.25369I
b = 1.39032 1.02302I
5.31953 + 1.23761I 2.13192 0.75441I
u = 0.028586 0.673943I
a = 2.75743 1.25369I
b = 1.39032 + 1.02302I
5.31953 1.23761I 2.13192 + 0.75441I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.306990 + 0.302770I
a = 0.54892 + 1.54089I
b = 2.14001 0.30607I
0.13672 + 10.00530I 5.74688 9.45823I
u = 1.306990 0.302770I
a = 0.54892 1.54089I
b = 2.14001 + 0.30607I
0.13672 10.00530I 5.74688 + 9.45823I
u = 1.274370 + 0.449256I
a = 0.464706 + 0.179729I
b = 0.289894 0.612925I
7.05845 1.54689I 5.29634 + 0.63495I
u = 1.274370 0.449256I
a = 0.464706 0.179729I
b = 0.289894 + 0.612925I
7.05845 + 1.54689I 5.29634 0.63495I
u = 1.292980 + 0.447168I
a = 0.48290 + 2.40208I
b = 4.44596 + 0.24017I
10.90240 6.46399I 2.13256 + 3.64968I
u = 1.292980 0.447168I
a = 0.48290 2.40208I
b = 4.44596 0.24017I
10.90240 + 6.46399I 2.13256 3.64968I
u = 1.300000 + 0.439361I
a = 0.464718 + 0.254925I
b = 0.131131 0.562319I
6.86104 + 8.18007I 5.63732 5.18856I
u = 1.300000 0.439361I
a = 0.464718 0.254925I
b = 0.131131 + 0.562319I
6.86104 8.18007I 5.63732 + 5.18856I
u = 1.313670 + 0.446415I
a = 0.61332 + 2.40054I
b = 4.34015 + 0.59580I
10.6081 + 13.2523I 2.64420 8.00654I
u = 1.313670 0.446415I
a = 0.61332 2.40054I
b = 4.34015 0.59580I
10.6081 13.2523I 2.64420 + 8.00654I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.605125
a = 0.150256
b = 0.724538
0.878305 11.8450
u = 0.357155 + 0.473523I
a = 1.032500 + 0.775837I
b = 0.077318 + 0.333065I
0.06389 3.04882I 6.31761 + 9.14792I
u = 0.357155 0.473523I
a = 1.032500 0.775837I
b = 0.077318 0.333065I
0.06389 + 3.04882I 6.31761 9.14792I
u = 0.135558 + 0.221933I
a = 0.04024 + 3.17604I
b = 0.547219 0.274542I
1.63800 + 0.52732I 3.97358 0.67184I
u = 0.135558 0.221933I
a = 0.04024 3.17604I
b = 0.547219 + 0.274542I
1.63800 0.52732I 3.97358 + 0.67184I
8
II. I
u
2
= hu
5
u
3
+ b u, u
3
+ a, u
15
5u
13
+ · · · 3u 1i
(i) Arc colorings
a
1
=
0
u
a
7
=
1
0
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
2
=
u
3
u
5
+ u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
u
3
+ u
a
4
=
u
4
u
2
+ 1
u
6
2u
4
+ u
2
a
11
=
u
3
2u
u
3
+ u
a
8
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
10
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
a
9
=
u
12
5u
10
+ 9u
8
4u
6
6u
4
+ 5u
2
+ 1
u
12
+ 4u
10
6u
8
+ 2u
6
+ 3u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
16u
10
4u
9
+ 24u
8
+ 12u
7
12u
5
28u
4
8u
3
+ 16u
2
+ 12u + 14
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 10u
14
+ ··· + 3u + 1
c
2
, c
4
, c
5
c
6
, c
12
u
15
5u
13
+ ··· 3u + 1
c
3
, c
9
(u
5
u
4
+ u
2
+ u 1)
3
c
7
, c
8
, c
10
c
11
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)
3
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
10y
14
+ ··· + 23y 1
c
2
, c
4
, c
5
c
6
, c
12
y
15
10y
14
+ ··· + 3y 1
c
3
, c
9
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
3
c
7
, c
8
, c
10
c
11
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
3
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.016489 + 0.918115I
a = 0.041693 + 0.773164I
b = 0.083746 0.505303I
10.95830 3.33174I 2.08126 + 2.36228I
u = 0.016489 0.918115I
a = 0.041693 0.773164I
b = 0.083746 + 0.505303I
10.95830 + 3.33174I 2.08126 2.36228I
u = 1.088950 + 0.365332I
a = 0.85527 1.25089I
b = 2.03946 0.38065I
1.81981 + 2.21397I 3.11432 4.22289I
u = 1.088950 0.365332I
a = 0.85527 + 1.25089I
b = 2.03946 + 0.38065I
1.81981 2.21397I 3.11432 + 4.22289I
u = 1.16504
a = 1.58132
b = 0.600011
0.882183 11.6090
u = 1.193940 + 0.276748I
a = 1.42761 1.16230I
b = 1.46394 1.07220I
1.81981 + 2.21397I 3.11432 4.22289I
u = 1.193940 0.276748I
a = 1.42761 + 1.16230I
b = 1.46394 + 1.07220I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.104987 + 0.642080I
a = 0.128690 + 0.243477I
b = 0.108165 + 0.318259I
1.81981 2.21397I 3.11432 + 4.22289I
u = 0.104987 0.642080I
a = 0.128690 0.243477I
b = 0.108165 0.318259I
1.81981 + 2.21397I 3.11432 4.22289I
u = 1.269280 + 0.467945I
a = 1.21110 2.15922I
b = 3.35937 1.81738I
10.95830 + 3.33174I 2.08126 2.36228I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.269280 0.467945I
a = 1.21110 + 2.15922I
b = 3.35937 + 1.81738I
10.95830 3.33174I 2.08126 + 2.36228I
u = 1.285770 + 0.450170I
a = 1.34395 2.14145I
b = 3.15926 2.07048I
10.95830 + 3.33174I 2.08126 2.36228I
u = 1.285770 0.450170I
a = 1.34395 + 2.14145I
b = 3.15926 + 2.07048I
10.95830 3.33174I 2.08126 + 2.36228I
u = 0.582519 + 0.134108I
a = 0.166235 0.134108I
b = 0.716289 + 0.199149I
0.882183 11.60884 + 0.I
u = 0.582519 0.134108I
a = 0.166235 + 0.134108I
b = 0.716289 0.199149I
0.882183 11.60884 + 0.I
13
III. I
u
3
= hb + 1, a 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
7
=
1
0
a
6
=
1
1
a
12
=
1
0
a
2
=
1
1
a
5
=
0
1
a
3
=
1
0
a
4
=
1
0
a
11
=
1
0
a
8
=
1
0
a
10
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
7
, c
8
c
9
, c
10
, c
11
u
c
4
, c
5
, c
6
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
12
y 1
c
3
, c
7
, c
8
c
9
, c
10
, c
11
y
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
0 0
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
15
+ 10u
14
+ ··· + 3u + 1)(u
35
+ 20u
34
+ ··· + 3u + 1)
c
2
(u 1)(u
15
5u
13
+ ··· 3u + 1)(u
35
2u
34
+ ··· + 3u 1)
c
3
, c
9
u(u
5
u
4
+ u
2
+ u 1)
3
(u
35
+ 2u
34
+ ··· 2u 2)
c
4
(u + 1)(u
15
5u
13
+ ··· 3u + 1)(u
35
2u
34
+ ··· + 3u 1)
c
5
, c
6
(u + 1)(u
15
5u
13
+ ··· 3u + 1)(u
35
+ 2u
34
+ ··· u 1)
c
7
, c
8
, c
10
c
11
u(u
5
u
4
+ ··· + 3u 1)
3
(u
35
6u
34
+ ··· + 8u 4)
c
12
(u 1)(u
15
5u
13
+ ··· 3u + 1)(u
35
+ 2u
34
+ ··· u 1)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y
15
10y
14
+ ··· + 23y 1)(y
35
8y
34
+ ··· + 35y 1)
c
2
, c
4
(y 1)(y
15
10y
14
+ ··· + 3y 1)(y
35
20y
34
+ ··· + 3y 1)
c
3
, c
9
y(y
5
y
4
+ ··· + 3y 1)
3
(y
35
6y
34
+ ··· + 8y 4)
c
5
, c
6
, c
12
(y 1)(y
15
10y
14
+ ··· + 3y 1)(y
35
28y
34
+ ··· 13y 1)
c
7
, c
8
, c
10
c
11
y(y
5
+ 7y
4
+ ··· + 3y 1)
3
(y
35
+ 42y
34
+ ··· 136y 16)
19