12a
0169
(K12a
0169
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 1 12 11 10 4 8 7 6
Solving Sequence
4,10
9 3 8 11 7 12 6 1 2 5
c
9
c
3
c
8
c
10
c
7
c
11
c
6
c
12
c
1
c
5
c
2
, c
4
Ideals for irreducible components
2
of X
par
I
u
1
= hu
24
u
23
+ ··· 2u
2
+ 1i
* 1 irreducible components of dim
C
= 0, with total 24 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
24
u
23
+ · · · 2u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
2
a
11
=
u
4
u
2
+ 1
u
4
a
7
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
12
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
8
2u
4
a
6
=
u
10
+ u
8
4u
6
+ 3u
4
3u
2
+ 1
u
10
+ 3u
6
+ u
2
a
1
=
u
12
u
10
+ 5u
8
4u
6
+ 6u
4
3u
2
+ 1
u
12
4u
8
3u
4
a
2
=
u
16
u
14
+ 7u
12
6u
10
+ 15u
8
10u
6
+ 10u
4
4u
2
+ 1
u
18
2u
16
+ 7u
14
12u
12
+ 15u
10
20u
8
+ 10u
6
8u
4
+ u
2
a
5
=
u
14
+ u
12
6u
10
+ 5u
8
10u
6
+ 6u
4
4u
2
+ 1
u
14
+ 5u
10
+ 6u
6
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
23
+8u
21
4u
20
44u
19
+4u
18
+72u
17
32u
16
176u
15
+28u
14
+228u
13
88u
12
308u
11
+ 64u
10
+ 296u
9
96u
8
220u
7
+ 52u
6
+ 136u
5
28u
4
44u
3
+ 4u
2
+ 16u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 15u
23
+ ··· + 4u + 1
c
2
, c
4
u
24
u
23
+ ··· 4u + 1
c
3
, c
9
u
24
u
23
+ ··· 2u
2
+ 1
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
u
24
3u
23
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
11y
23
+ ··· 20y + 1
c
2
, c
4
y
24
15y
23
+ ··· 4y + 1
c
3
, c
9
y
24
3y
23
+ ··· 4y + 1
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
24
+ 37y
23
+ ··· + 12y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.818053 + 0.585237I
4.34966 + 5.76332I 0.83619 8.32312I
u = 0.818053 0.585237I
4.34966 5.76332I 0.83619 + 8.32312I
u = 0.629900 + 0.676291I
4.99244 1.16181I 3.45696 + 0.66594I
u = 0.629900 0.676291I
4.99244 + 1.16181I 3.45696 0.66594I
u = 0.703557 + 0.542696I
1.64192 2.01575I 2.27145 + 4.63931I
u = 0.703557 0.542696I
1.64192 + 2.01575I 2.27145 4.63931I
u = 0.865592 + 0.818505I
9.02499 + 3.00763I 0.51260 2.75465I
u = 0.865592 0.818505I
9.02499 3.00763I 0.51260 + 2.75465I
u = 0.748084 + 0.274295I
0.07774 3.02933I 5.70852 + 9.26987I
u = 0.748084 0.274295I
0.07774 + 3.02933I 5.70852 9.26987I
u = 0.844876 + 0.858831I
12.84350 + 1.46852I 3.16556 0.66920I
u = 0.844876 0.858831I
12.84350 1.46852I 3.16556 + 0.66920I
u = 0.908318 + 0.819726I
12.6233 7.6239I 2.60069 + 6.03151I
u = 0.908318 0.819726I
12.6233 + 7.6239I 2.60069 6.03151I
u = 0.662055 + 0.056751I
0.927331 + 0.040320I 11.54599 0.37990I
u = 0.662055 0.056751I
0.927331 0.040320I 11.54599 + 0.37990I
u = 0.966596 + 0.956593I
18.1029 3.5079I 0.10153 + 2.15218I
u = 0.966596 0.956593I
18.1029 + 3.5079I 0.10153 2.15218I
u = 0.962124 + 0.965092I
14.0584 1.6220I 3.03720 + 0.65264I
u = 0.962124 0.965092I
14.0584 + 1.6220I 3.03720 0.65264I
u = 0.975953 + 0.955750I
14.1060 + 8.6639I 2.94392 4.94788I
u = 0.975953 0.955750I
14.1060 8.6639I 2.94392 + 4.94788I
u = 0.242249 + 0.453783I
1.64107 + 0.52371I 4.09957 0.43757I
u = 0.242249 0.453783I
1.64107 0.52371I 4.09957 + 0.43757I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
24
+ 15u
23
+ ··· + 4u + 1
c
2
, c
4
u
24
u
23
+ ··· 4u + 1
c
3
, c
9
u
24
u
23
+ ··· 2u
2
+ 1
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
u
24
3u
23
+ ··· 4u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
24
11y
23
+ ··· 20y + 1
c
2
, c
4
y
24
15y
23
+ ··· 4y + 1
c
3
, c
9
y
24
3y
23
+ ··· 4y + 1
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
24
+ 37y
23
+ ··· + 12y + 1
7