12a
0174
(K12a
0174
)
A knot diagram
1
Linearized knot diagam
3 5 9 6 2 10 11 1 4 12 8 7
Solving Sequence
7,11
8 12
1,3
2 9 4 10 6 5
c
7
c
11
c
12
c
1
c
8
c
3
c
10
c
6
c
5
c
2
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
94
6u
93
+ ··· + 2b 2, 2u
94
+ 2u
93
+ ··· + 2a 1, u
95
3u
94
+ ··· 2u + 1i
I
u
2
= h−u
5
a + 2u
3
a 2au + b, u
4
a u
5
u
4
+ u
2
a + u
3
+ a
2
+ au + u
2
+ u, u
6
+ u
5
u
4
2u
3
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 107 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h2u
94
6u
93
+· · ·+2b2, 2u
94
+2u
93
+· · ·+2a1, u
95
3u
94
+· · ·2u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
12
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
3
=
u
94
u
93
+ ··· + 2u +
1
2
u
94
+ 3u
93
+ ···
5
2
u + 1
a
2
=
u
94
+ 2u
93
+ ··· + u +
3
2
1
2
u
91
1
2
u
90
+ ··· u
2
+
1
2
u
a
9
=
u
8
u
6
+ u
4
+ 1
u
8
2u
6
+ 2u
4
a
4
=
u
94
6u
93
+ ··· + 3u
5
2
5u
94
+ 6u
93
+ ··· + 3u
2
7
2
u
a
10
=
u
3
u
5
u
3
+ u
a
6
=
u
8
u
6
+ u
4
+ 1
u
10
2u
8
+ 3u
6
2u
4
+ u
2
a
5
=
3
2
u
94
11
2
u
93
+ ··· + 4u
3
2
7
2
u
94
+
9
2
u
93
+ ··· +
5
2
u
2
5
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
94
27
2
u
93
+ ··· +
13
2
u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
95
+ 29u
94
+ ··· 12u 1
c
2
, c
5
u
95
+ 7u
94
+ ··· 4u 1
c
3
, c
9
u
95
+ u
94
+ ··· 12288u 4096
c
6
, c
8
u
95
3u
94
+ ··· + 4216u 1201
c
7
, c
11
u
95
+ 3u
94
+ ··· 2u 1
c
10
u
95
+ 43u
94
+ ··· + 8u + 1
c
12
u
95
+ 9u
94
+ ··· + 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
95
+ 81y
94
+ ··· 492y 1
c
2
, c
5
y
95
+ 29y
94
+ ··· 12y 1
c
3
, c
9
y
95
65y
94
+ ··· + 184549376y 16777216
c
6
, c
8
y
95
83y
94
+ ··· + 13537528y 1442401
c
7
, c
11
y
95
43y
94
+ ··· + 8y 1
c
10
y
95
+ 21y
94
+ ··· 44y 1
c
12
y
95
+ y
94
+ ··· + 76y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.780961 + 0.613854I
a = 1.148870 0.337111I
b = 0.164002 + 1.387420I
6.51601 0.63092I 0
u = 0.780961 0.613854I
a = 1.148870 + 0.337111I
b = 0.164002 1.387420I
6.51601 + 0.63092I 0
u = 0.814626 + 0.609563I
a = 1.35420 + 0.79384I
b = 0.471342 1.314330I
6.41936 + 5.44116I 0
u = 0.814626 0.609563I
a = 1.35420 0.79384I
b = 0.471342 + 1.314330I
6.41936 5.44116I 0
u = 0.962721 + 0.330637I
a = 0.362055 + 0.865330I
b = 0.390291 + 0.463584I
1.64642 1.19817I 0
u = 0.962721 0.330637I
a = 0.362055 0.865330I
b = 0.390291 0.463584I
1.64642 + 1.19817I 0
u = 0.550887 + 0.774748I
a = 0.203078 0.527598I
b = 0.91385 2.47044I
11.5214 8.2023I 0
u = 0.550887 0.774748I
a = 0.203078 + 0.527598I
b = 0.91385 + 2.47044I
11.5214 + 8.2023I 0
u = 0.538994 + 0.781645I
a = 0.413072 + 0.514846I
b = 1.21805 + 1.93499I
12.33230 1.87951I 0
u = 0.538994 0.781645I
a = 0.413072 0.514846I
b = 1.21805 1.93499I
12.33230 + 1.87951I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.049250 + 0.090947I
a = 1.13294 1.38229I
b = 1.130640 0.708429I
1.41613 3.48168I 0
u = 1.049250 0.090947I
a = 1.13294 + 1.38229I
b = 1.130640 + 0.708429I
1.41613 + 3.48168I 0
u = 1.057200 + 0.026608I
a = 0.53847 3.81847I
b = 0.32449 1.51301I
1.39128 + 2.84660I 0
u = 1.057200 0.026608I
a = 0.53847 + 3.81847I
b = 0.32449 + 1.51301I
1.39128 2.84660I 0
u = 1.038650 + 0.212196I
a = 1.54257 0.91022I
b = 0.952348 + 0.006395I
3.09968 0.14692I 0
u = 1.038650 0.212196I
a = 1.54257 + 0.91022I
b = 0.952348 0.006395I
3.09968 + 0.14692I 0
u = 1.06742
a = 0.00525876
b = 0.484339
2.20266 0
u = 0.442792 + 0.809663I
a = 0.447657 0.371359I
b = 0.11488 2.77795I
11.78680 + 5.10800I 0
u = 0.442792 0.809663I
a = 0.447657 + 0.371359I
b = 0.11488 + 2.77795I
11.78680 5.10800I 0
u = 0.998749 + 0.411686I
a = 0.51601 2.07092I
b = 0.89051 1.32331I
1.81484 0.05574I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.998749 0.411686I
a = 0.51601 + 2.07092I
b = 0.89051 + 1.32331I
1.81484 + 0.05574I 0
u = 0.431435 + 0.809966I
a = 0.262891 + 0.408976I
b = 0.33236 + 3.10094I
10.8466 + 11.3857I 0
u = 0.431435 0.809966I
a = 0.262891 0.408976I
b = 0.33236 3.10094I
10.8466 11.3857I 0
u = 0.481177 + 0.776347I
a = 0.635172 + 0.078226I
b = 0.154742 0.414216I
7.59709 + 1.51037I 0
u = 0.481177 0.776347I
a = 0.635172 0.078226I
b = 0.154742 + 0.414216I
7.59709 1.51037I 0
u = 0.488387 + 0.768831I
a = 0.226129 0.739384I
b = 0.52679 3.19996I
6.78240 + 1.47720I 0
u = 0.488387 0.768831I
a = 0.226129 + 0.739384I
b = 0.52679 + 3.19996I
6.78240 1.47720I 0
u = 0.985538 + 0.468332I
a = 1.71416 + 1.11430I
b = 0.53775 + 1.45196I
0.41801 1.39796I 0
u = 0.985538 0.468332I
a = 1.71416 1.11430I
b = 0.53775 1.45196I
0.41801 + 1.39796I 0
u = 0.470750 + 0.775433I
a = 0.007864 + 0.757463I
b = 1.22123 + 3.04799I
6.68359 4.44968I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.470750 0.775433I
a = 0.007864 0.757463I
b = 1.22123 3.04799I
6.68359 + 4.44968I 0
u = 0.498994 + 0.747728I
a = 0.553295 0.061468I
b = 0.488696 0.759297I
3.92549 2.45104I 0
u = 0.498994 0.747728I
a = 0.553295 + 0.061468I
b = 0.488696 + 0.759297I
3.92549 + 2.45104I 0
u = 0.450266 + 0.769200I
a = 0.484149 0.086895I
b = 0.85386 + 1.26850I
3.65208 + 5.26825I 5.67264 4.34315I
u = 0.450266 0.769200I
a = 0.484149 + 0.086895I
b = 0.85386 1.26850I
3.65208 5.26825I 5.67264 + 4.34315I
u = 0.997603 + 0.486225I
a = 0.07933 + 1.71375I
b = 0.850725 + 0.977718I
0.26339 + 4.20614I 0
u = 0.997603 0.486225I
a = 0.07933 1.71375I
b = 0.850725 0.977718I
0.26339 4.20614I 0
u = 0.818001 + 0.283222I
a = 1.22395 + 0.95854I
b = 0.838364 + 0.628083I
0.91580 + 2.96787I 5.16431 4.85868I
u = 0.818001 0.283222I
a = 1.22395 0.95854I
b = 0.838364 0.628083I
0.91580 2.96787I 5.16431 + 4.85868I
u = 1.133080 + 0.079025I
a = 0.74599 + 3.05335I
b = 0.12767 + 1.70298I
6.36459 3.00517I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.133080 0.079025I
a = 0.74599 3.05335I
b = 0.12767 1.70298I
6.36459 + 3.00517I 0
u = 1.033340 + 0.475771I
a = 2.20424 0.41049I
b = 0.01972 1.63353I
1.30770 6.29698I 0
u = 1.033340 0.475771I
a = 2.20424 + 0.41049I
b = 0.01972 + 1.63353I
1.30770 + 6.29698I 0
u = 1.068430 + 0.396628I
a = 0.731444 0.056111I
b = 0.051532 0.930237I
4.58435 1.29164I 0
u = 1.068430 0.396628I
a = 0.731444 + 0.056111I
b = 0.051532 + 0.930237I
4.58435 + 1.29164I 0
u = 1.136250 + 0.096416I
a = 0.24065 3.64517I
b = 0.42912 2.02773I
5.49121 9.18730I 0
u = 1.136250 0.096416I
a = 0.24065 + 3.64517I
b = 0.42912 + 2.02773I
5.49121 + 9.18730I 0
u = 1.118070 + 0.307627I
a = 0.89147 + 1.34016I
b = 0.446385 + 1.300890I
0.16831 2.74248I 0
u = 1.118070 0.307627I
a = 0.89147 1.34016I
b = 0.446385 1.300890I
0.16831 + 2.74248I 0
u = 1.074940 + 0.455048I
a = 0.331036 0.869702I
b = 0.983402 0.770520I
4.19048 + 5.73083I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.074940 0.455048I
a = 0.331036 + 0.869702I
b = 0.983402 + 0.770520I
4.19048 5.73083I 0
u = 1.122510 + 0.332451I
a = 0.269407 1.226360I
b = 0.122905 1.274200I
0.10202 + 2.84328I 0
u = 1.122510 0.332451I
a = 0.269407 + 1.226360I
b = 0.122905 + 1.274200I
0.10202 2.84328I 0
u = 0.405906 + 0.713088I
a = 0.0772709 + 0.1123500I
b = 1.131810 + 0.566237I
1.26600 1.90136I 2.51207 0.74357I
u = 0.405906 0.713088I
a = 0.0772709 0.1123500I
b = 1.131810 0.566237I
1.26600 + 1.90136I 2.51207 + 0.74357I
u = 0.489486 + 0.653058I
a = 0.219391 0.026142I
b = 0.604620 0.877826I
1.71463 0.14968I 4.78717 + 1.52967I
u = 0.489486 0.653058I
a = 0.219391 + 0.026142I
b = 0.604620 + 0.877826I
1.71463 + 0.14968I 4.78717 1.52967I
u = 1.048610 + 0.559029I
a = 0.84830 + 1.23363I
b = 0.344607 + 1.144680I
0.05936 + 4.88677I 0
u = 1.048610 0.559029I
a = 0.84830 1.23363I
b = 0.344607 1.144680I
0.05936 4.88677I 0
u = 1.037050 + 0.640450I
a = 3.43025 + 0.11156I
b = 1.40816 + 2.01666I
10.07100 + 2.86446I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.037050 0.640450I
a = 3.43025 0.11156I
b = 1.40816 2.01666I
10.07100 2.86446I 0
u = 1.059720 + 0.608371I
a = 0.861944 + 0.972153I
b = 0.415084 + 0.511149I
2.25792 2.70432I 0
u = 1.059720 0.608371I
a = 0.861944 0.972153I
b = 0.415084 0.511149I
2.25792 + 2.70432I 0
u = 1.046590 + 0.640226I
a = 3.02435 + 0.44398I
b = 1.60073 1.41737I
10.81700 3.47625I 0
u = 1.046590 0.640226I
a = 3.02435 0.44398I
b = 1.60073 + 1.41737I
10.81700 + 3.47625I 0
u = 1.123850 + 0.492704I
a = 1.055900 0.745592I
b = 0.567989 0.875408I
0.96122 + 10.56030I 0
u = 1.123850 0.492704I
a = 1.055900 + 0.745592I
b = 0.567989 + 0.875408I
0.96122 10.56030I 0
u = 1.117800 + 0.509792I
a = 0.91098 + 1.32408I
b = 0.752832 + 1.006100I
1.50574 + 4.89986I 0
u = 1.117800 0.509792I
a = 0.91098 1.32408I
b = 0.752832 1.006100I
1.50574 4.89986I 0
u = 1.089020 + 0.573261I
a = 1.59858 + 1.01418I
b = 1.36667 0.50084I
0.73386 + 6.83458I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.089020 0.573261I
a = 1.59858 1.01418I
b = 1.36667 + 0.50084I
0.73386 6.83458I 0
u = 1.070370 + 0.616569I
a = 4.10787 + 1.29996I
b = 1.29406 + 3.14806I
5.04940 + 3.76135I 0
u = 1.070370 0.616569I
a = 4.10787 1.29996I
b = 1.29406 3.14806I
5.04940 3.76135I 0
u = 1.075990 + 0.618091I
a = 0.204895 + 0.417350I
b = 0.052818 + 0.761747I
5.82498 6.77346I 0
u = 1.075990 0.618091I
a = 0.204895 0.417350I
b = 0.052818 0.761747I
5.82498 + 6.77346I 0
u = 1.080650 + 0.614563I
a = 4.41582 0.48798I
b = 1.93659 2.88567I
4.86780 + 9.69724I 0
u = 1.080650 0.614563I
a = 4.41582 + 0.48798I
b = 1.93659 + 2.88567I
4.86780 9.69724I 0
u = 1.087940 + 0.606131I
a = 1.89689 + 0.29335I
b = 1.06745 1.47271I
1.75821 10.46800I 0
u = 1.087940 0.606131I
a = 1.89689 0.29335I
b = 1.06745 + 1.47271I
1.75821 + 10.46800I 0
u = 1.103320 + 0.620150I
a = 3.00445 + 1.91427I
b = 0.35053 + 3.02366I
9.8130 10.4617I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.103320 0.620150I
a = 3.00445 1.91427I
b = 0.35053 3.02366I
9.8130 + 10.4617I 0
u = 1.107970 + 0.616328I
a = 3.72207 1.65268I
b = 0.81689 3.27015I
8.8261 16.7248I 0
u = 1.107970 0.616328I
a = 3.72207 + 1.65268I
b = 0.81689 + 3.27015I
8.8261 + 16.7248I 0
u = 0.217141 + 0.694895I
a = 0.757905 + 0.260323I
b = 0.452422 0.998289I
4.06957 0.36434I 7.64440 + 0.20889I
u = 0.217141 0.694895I
a = 0.757905 0.260323I
b = 0.452422 + 0.998289I
4.06957 + 0.36434I 7.64440 0.20889I
u = 0.175942 + 0.692243I
a = 0.961313 0.565831I
b = 0.145143 + 0.854305I
3.65758 6.12809I 6.30632 + 5.77573I
u = 0.175942 0.692243I
a = 0.961313 + 0.565831I
b = 0.145143 0.854305I
3.65758 + 6.12809I 6.30632 5.77573I
u = 0.563051 + 0.342434I
a = 0.21207 + 1.94850I
b = 0.586216 0.752758I
0.82985 2.31768I 3.86321 + 5.04546I
u = 0.563051 0.342434I
a = 0.21207 1.94850I
b = 0.586216 + 0.752758I
0.82985 + 2.31768I 3.86321 5.04546I
u = 0.474614 + 0.424865I
a = 0.471420 + 0.106327I
b = 0.710860 0.278059I
1.164430 0.256982I 9.18842 + 0.97858I
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.474614 0.424865I
a = 0.471420 0.106327I
b = 0.710860 + 0.278059I
1.164430 + 0.256982I 9.18842 0.97858I
u = 0.093168 + 0.511687I
a = 0.032938 1.288750I
b = 0.489285 + 0.324549I
1.69450 1.94976I 0.97114 + 4.55157I
u = 0.093168 0.511687I
a = 0.032938 + 1.288750I
b = 0.489285 0.324549I
1.69450 + 1.94976I 0.97114 4.55157I
u = 0.320233 + 0.371519I
a = 0.36987 2.03603I
b = 0.193491 + 0.947554I
0.53986 + 2.49744I 1.77366 1.90679I
u = 0.320233 0.371519I
a = 0.36987 + 2.03603I
b = 0.193491 0.947554I
0.53986 2.49744I 1.77366 + 1.90679I
14
II. I
u
2
= h−u
5
a + 2u
3
a 2au + b, u
4
a u
5
u
4
+ u
2
a + u
3
+ a
2
+ au +
u
2
+ u, u
6
+ u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
12
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
3
=
a
u
5
a 2u
3
a + 2au
a
2
=
u
4
u
3
+ u
2
+ a + u
u
5
a 2u
3
a u
3
+ 2au + u + 1
a
9
=
u
3
u
5
u
3
+ u
a
4
=
a
u
5
a 2u
3
a + 2au
a
10
=
u
3
u
5
u
3
+ u
a
6
=
u
3
u
3
u
a
5
=
u
5
a + u
3
a au + a
u
5
a u
4
a + u
3
a + 2u
2
a a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
5
a 2u
4
a +10u
3
a +4u
4
+ 3u
2
a u
3
9au 5u
2
2a 4u +3
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
(u
2
u + 1)
6
c
2
(u
2
+ u + 1)
6
c
3
, c
9
u
12
c
6
, c
8
, c
11
(u
6
u
5
u
4
+ 2u
3
u + 1)
2
c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
c
10
, c
12
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
6
c
3
, c
9
y
12
c
6
, c
7
, c
8
c
11
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
c
10
, c
12
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.54263 + 1.33698I
b = 0.500000 + 0.866025I
1.89061 2.95419I 3.93112 + 4.16322I
u = 1.002190 + 0.295542I
a = 0.88654 1.13843I
b = 0.500000 0.866025I
1.89061 + 1.10558I 0.42156 3.46269I
u = 1.002190 0.295542I
a = 0.54263 1.33698I
b = 0.500000 0.866025I
1.89061 + 2.95419I 3.93112 4.16322I
u = 1.002190 0.295542I
a = 0.88654 + 1.13843I
b = 0.500000 + 0.866025I
1.89061 1.10558I 0.42156 + 3.46269I
u = 0.428243 + 0.664531I
a = 0.386545 0.272402I
b = 0.500000 + 0.866025I
1.89061 + 1.10558I 5.61650 2.84542I
u = 0.428243 + 0.664531I
a = 0.042635 + 0.470959I
b = 0.500000 0.866025I
1.89061 2.95419I 7.50338 + 4.33850I
u = 0.428243 0.664531I
a = 0.386545 + 0.272402I
b = 0.500000 0.866025I
1.89061 1.10558I 5.61650 + 2.84542I
u = 0.428243 0.664531I
a = 0.042635 0.470959I
b = 0.500000 + 0.866025I
1.89061 + 2.95419I 7.50338 4.33850I
u = 1.073950 + 0.558752I
a = 1.44307 0.25581I
b = 0.500000 + 0.866025I
7.72290I 4.13964 9.04329I
u = 1.073950 + 0.558752I
a = 0.94307 1.12183I
b = 0.500000 0.866025I
3.66314I 1.09315 1.33646I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 1.44307 + 0.25581I
b = 0.500000 0.866025I
7.72290I 4.13964 + 9.04329I
u = 1.073950 0.558752I
a = 0.94307 + 1.12183I
b = 0.500000 + 0.866025I
3.66314I 1.09315 + 1.33646I
19
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
((u
2
u + 1)
6
)(u
95
+ 29u
94
+ ··· 12u 1)
c
2
((u
2
+ u + 1)
6
)(u
95
+ 7u
94
+ ··· 4u 1)
c
3
, c
9
u
12
(u
95
+ u
94
+ ··· 12288u 4096)
c
5
((u
2
u + 1)
6
)(u
95
+ 7u
94
+ ··· 4u 1)
c
6
, c
8
((u
6
u
5
u
4
+ 2u
3
u + 1)
2
)(u
95
3u
94
+ ··· + 4216u 1201)
c
7
((u
6
+ u
5
u
4
2u
3
+ u + 1)
2
)(u
95
+ 3u
94
+ ··· 2u 1)
c
10
((u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
)(u
95
+ 43u
94
+ ··· + 8u + 1)
c
11
((u
6
u
5
u
4
+ 2u
3
u + 1)
2
)(u
95
+ 3u
94
+ ··· 2u 1)
c
12
((u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
2
)(u
95
+ 9u
94
+ ··· + 6u + 1)
20
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
6
)(y
95
+ 81y
94
+ ··· 492y 1)
c
2
, c
5
((y
2
+ y + 1)
6
)(y
95
+ 29y
94
+ ··· 12y 1)
c
3
, c
9
y
12
(y
95
65y
94
+ ··· + 1.84549 × 10
8
y 1.67772 × 10
7
)
c
6
, c
8
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
95
83y
94
+ ··· + 13537528y 1442401)
c
7
, c
11
((y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
)(y
95
43y
94
+ ··· + 8y 1)
c
10
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
)(y
95
+ 21y
94
+ ··· 44y 1)
c
12
((y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
)(y
95
+ y
94
+ ··· + 76y 1)
21