12a
0175
(K12a
0175
)
A knot diagram
1
Linearized knot diagam
3 5 9 6 2 10 12 4 8 1 7 11
Solving Sequence
3,9 4,5
2 6 1 8 10 7 11 12
c
3
c
2
c
5
c
1
c
8
c
9
c
6
c
10
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.02409 × 10
165
u
96
+ 3.56484 × 10
165
u
95
+ ··· + 6.58858 × 10
165
b 3.79296 × 10
167
,
1.29894 × 10
166
u
96
+ 1.51856 × 10
166
u
95
+ ··· + 1.31772 × 10
166
a 1.20377 × 10
168
, u
97
+ u
96
+ ··· 96u 64i
I
v
1
= ha, 2v
5
3v
4
3v
3
v
2
+ 5b + 9v 1, v
6
v
5
v
4
+ 3v
2
2v + 1i
* 2 irreducible components of dim
C
= 0, with total 103 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.02 × 10
165
u
96
+ 3.56 × 10
165
u
95
+ · · · + 6.59 × 10
165
b 3.79 ×
10
167
, 1.30 × 10
166
u
96
+ 1.52 × 10
166
u
95
+ · · · + 1.32 × 10
166
a 1.20 ×
10
168
, u
97
+ u
96
+ · · · 96u 64i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
0.985751u
96
1.15242u
95
+ ··· + 112.034u + 91.3525
0.458990u
96
0.541064u
95
+ ··· 5.09259u + 57.5687
a
2
=
0.884894u
96
1.06215u
95
+ ··· + 101.503u + 88.1350
0.217189u
96
+ 0.134940u
95
+ ··· + 16.9827u 39.4811
a
6
=
0.884894u
96
1.06215u
95
+ ··· + 101.503u + 88.1350
0.991372u
96
0.0100898u
95
+ ··· 90.6325u + 28.1367
a
1
=
1.10208u
96
0.927210u
95
+ ··· + 118.486u + 48.6539
0.217189u
96
+ 0.134940u
95
+ ··· + 16.9827u 39.4811
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
7
=
0.396152u
96
0.974194u
95
+ ··· + 50.3059u + 89.0931
0.711716u
96
0.518934u
95
+ ··· 49.1432u + 65.3365
a
11
=
0.947269u
96
0.890091u
95
+ ··· + 88.6821u + 49.4582
0.0101335u
96
+ 0.113593u
95
+ ··· 6.46893u 26.8412
a
12
=
0.764380u
96
+ 0.559446u
95
+ ··· + 53.8052u 63.9580
1.20457u
96
+ 0.524889u
95
+ ··· + 75.8592u 71.8245
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4.50422u
96
+ 1.68955u
95
+ ··· 477.136u 1.66216
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
97
+ 34u
96
+ ··· + 11u 1
c
2
, c
5
u
97
+ 4u
96
+ ··· + 3u + 1
c
3
, c
8
u
97
+ u
96
+ ··· 96u 64
c
6
u
97
+ 3u
96
+ ··· 1136u 1297
c
7
, c
11
u
97
3u
96
+ ··· + 4u 1
c
9
u
97
35u
96
+ ··· 52224u + 4096
c
10
, c
12
u
97
31u
96
+ ··· 14u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
97
+ 62y
96
+ ··· + 555y 1
c
2
, c
5
y
97
+ 34y
96
+ ··· + 11y 1
c
3
, c
8
y
97
+ 35y
96
+ ··· 52224y 4096
c
6
y
97
+ 13y
96
+ ··· 65476470y 1682209
c
7
, c
11
y
97
31y
96
+ ··· 14y 1
c
9
y
97
+ 43y
96
+ ··· 200278016y 16777216
c
10
, c
12
y
97
+ 73y
96
+ ··· + 50y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.559211 + 0.833102I
a = 2.93598 + 0.85719I
b = 0.640213 + 0.986388I
3.66440 + 1.12900I 0
u = 0.559211 0.833102I
a = 2.93598 0.85719I
b = 0.640213 0.986388I
3.66440 1.12900I 0
u = 0.921624 + 0.348229I
a = 0.705582 + 0.299295I
b = 0.703026 + 0.720139I
3.36866 + 0.02446I 0
u = 0.921624 0.348229I
a = 0.705582 0.299295I
b = 0.703026 0.720139I
3.36866 0.02446I 0
u = 0.103697 + 0.973816I
a = 0.806800 + 0.028255I
b = 0.622905 + 0.069810I
1.22652 + 2.27353I 0
u = 0.103697 0.973816I
a = 0.806800 0.028255I
b = 0.622905 0.069810I
1.22652 2.27353I 0
u = 0.617672 + 0.836741I
a = 0.633968 0.472132I
b = 0.574678 1.048600I
4.19841 + 2.32705I 0
u = 0.617672 0.836741I
a = 0.633968 + 0.472132I
b = 0.574678 + 1.048600I
4.19841 2.32705I 0
u = 0.393076 + 0.966556I
a = 0.784752 + 0.104315I
b = 0.665790 + 0.256866I
3.71107 2.90743I 0
u = 0.393076 0.966556I
a = 0.784752 0.104315I
b = 0.665790 0.256866I
3.71107 + 2.90743I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.954076 + 0.047302I
a = 0.678888 + 0.343504I
b = 0.696044 + 0.825381I
0.64837 4.98811I 0
u = 0.954076 0.047302I
a = 0.678888 0.343504I
b = 0.696044 0.825381I
0.64837 + 4.98811I 0
u = 0.645300 + 0.703994I
a = 1.023660 0.910421I
b = 0.030603 0.969352I
1.316410 0.236436I 0
u = 0.645300 0.703994I
a = 1.023660 + 0.910421I
b = 0.030603 + 0.969352I
1.316410 + 0.236436I 0
u = 0.569710 + 0.879256I
a = 0.633784 + 0.481988I
b = 0.560621 + 1.057840I
3.50660 + 3.37785I 0
u = 0.569710 0.879256I
a = 0.633784 0.481988I
b = 0.560621 1.057840I
3.50660 3.37785I 0
u = 0.601512 + 0.865138I
a = 2.72515 0.88927I
b = 0.646669 0.998365I
4.11264 7.12461I 0
u = 0.601512 0.865138I
a = 2.72515 + 0.88927I
b = 0.646669 + 0.998365I
4.11264 + 7.12461I 0
u = 0.926244 + 0.145352I
a = 0.666759 + 0.369780I
b = 0.680149 + 0.880890I
0.473530 0.305894I 0
u = 0.926244 0.145352I
a = 0.666759 0.369780I
b = 0.680149 0.880890I
0.473530 + 0.305894I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.951056 + 0.474035I
a = 0.636506 + 0.403254I
b = 0.673700 + 0.969389I
2.60981 5.33424I 0
u = 0.951056 0.474035I
a = 0.636506 0.403254I
b = 0.673700 0.969389I
2.60981 + 5.33424I 0
u = 0.909599 + 0.577057I
a = 0.715967 0.254923I
b = 0.728203 0.626828I
2.48877 + 0.51312I 0
u = 0.909599 0.577057I
a = 0.715967 + 0.254923I
b = 0.728203 + 0.626828I
2.48877 0.51312I 0
u = 0.808800 + 0.713714I
a = 0.92259 1.12481I
b = 0.038627 1.049570I
7.27155 4.70566I 0
u = 0.808800 0.713714I
a = 0.92259 + 1.12481I
b = 0.038627 + 1.049570I
7.27155 + 4.70566I 0
u = 0.681205 + 0.843165I
a = 0.852242 + 0.924197I
b = 0.064983 + 1.054230I
4.00994 2.62127I 0
u = 0.681205 0.843165I
a = 0.852242 0.924197I
b = 0.064983 1.054230I
4.00994 + 2.62127I 0
u = 0.739984 + 0.538074I
a = 0.652275 0.428907I
b = 0.617449 0.977470I
0.76408 + 3.26264I 0
u = 0.739984 0.538074I
a = 0.652275 + 0.428907I
b = 0.617449 + 0.977470I
0.76408 3.26264I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.802343 + 0.748909I
a = 0.889988 + 1.090280I
b = 0.021091 + 1.059600I
7.92238 1.15791I 0
u = 0.802343 0.748909I
a = 0.889988 1.090280I
b = 0.021091 1.059600I
7.92238 + 1.15791I 0
u = 0.503977 + 0.742800I
a = 0.12148 + 1.78100I
b = 0.639777 0.633736I
3.04156 + 2.02850I 4.00000 3.93778I
u = 0.503977 0.742800I
a = 0.12148 1.78100I
b = 0.639777 + 0.633736I
3.04156 2.02850I 4.00000 + 3.93778I
u = 0.967362 + 0.550103I
a = 0.704293 + 0.259773I
b = 0.746470 + 0.647655I
1.70048 + 5.14403I 0
u = 0.967362 0.550103I
a = 0.704293 0.259773I
b = 0.746470 0.647655I
1.70048 5.14403I 0
u = 0.590695 + 0.945576I
a = 0.756916 0.148066I
b = 0.715182 0.368711I
2.29120 + 2.48545I 0
u = 0.590695 0.945576I
a = 0.756916 + 0.148066I
b = 0.715182 + 0.368711I
2.29120 2.48545I 0
u = 0.614372 + 0.936095I
a = 0.787074 0.853524I
b = 0.120816 1.078960I
0.63114 + 5.15568I 0
u = 0.614372 0.936095I
a = 0.787074 + 0.853524I
b = 0.120816 + 1.078960I
0.63114 5.15568I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.080865 + 1.133620I
a = 1.62986 1.10490I
b = 0.752817 + 0.826084I
4.36765 + 1.71081I 0
u = 0.080865 1.133620I
a = 1.62986 + 1.10490I
b = 0.752817 0.826084I
4.36765 1.71081I 0
u = 0.070502 + 0.857380I
a = 0.729488 + 0.578116I
b = 0.371245 + 1.016130I
1.54806 5.69625I 5.02059 + 7.78118I
u = 0.070502 0.857380I
a = 0.729488 0.578116I
b = 0.371245 1.016130I
1.54806 + 5.69625I 5.02059 7.78118I
u = 0.216302 + 0.821989I
a = 0.777283 0.606819I
b = 0.313813 0.989855I
1.89002 + 0.62557I 3.27682 2.54234I
u = 0.216302 0.821989I
a = 0.777283 + 0.606819I
b = 0.313813 + 0.989855I
1.89002 0.62557I 3.27682 + 2.54234I
u = 0.572877 + 1.000360I
a = 0.750719 + 0.135692I
b = 0.735264 + 0.342685I
1.45728 8.16426I 0
u = 0.572877 1.000360I
a = 0.750719 0.135692I
b = 0.735264 0.342685I
1.45728 + 8.16426I 0
u = 0.959758 + 0.642441I
a = 0.620834 0.418859I
b = 0.668914 1.012510I
3.62554 + 4.84764I 0
u = 0.959758 0.642441I
a = 0.620834 + 0.418859I
b = 0.668914 + 1.012510I
3.62554 4.84764I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.181422 + 1.152130I
a = 2.08238 0.57032I
b = 0.740928 + 0.901905I
4.13850 + 3.94348I 0
u = 0.181422 1.152130I
a = 2.08238 + 0.57032I
b = 0.740928 0.901905I
4.13850 3.94348I 0
u = 0.428081 + 1.088840I
a = 0.80049 1.24984I
b = 0.772564 + 0.710004I
4.18113 + 0.71587I 0
u = 0.428081 1.088840I
a = 0.80049 + 1.24984I
b = 0.772564 0.710004I
4.18113 0.71587I 0
u = 0.563061 + 1.032860I
a = 0.503416 + 1.194440I
b = 0.773133 0.653958I
1.84211 + 2.97512I 0
u = 0.563061 1.032860I
a = 0.503416 1.194440I
b = 0.773133 + 0.653958I
1.84211 2.97512I 0
u = 1.002940 + 0.626538I
a = 0.618218 + 0.413528I
b = 0.680442 + 1.010310I
2.78079 10.59270I 0
u = 1.002940 0.626538I
a = 0.618218 0.413528I
b = 0.680442 1.010310I
2.78079 + 10.59270I 0
u = 0.411216 + 0.705558I
a = 0.10856 2.30048I
b = 0.613326 + 0.678658I
2.71127 + 3.87377I 5.00270 0.93534I
u = 0.411216 0.705558I
a = 0.10856 + 2.30048I
b = 0.613326 0.678658I
2.71127 3.87377I 5.00270 + 0.93534I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.322378 + 0.730346I
a = 0.680499 + 0.494589I
b = 0.502195 + 1.006730I
1.62089 1.29744I 10.04280 2.09415I
u = 0.322378 0.730346I
a = 0.680499 0.494589I
b = 0.502195 1.006730I
1.62089 + 1.29744I 10.04280 + 2.09415I
u = 0.528635 + 1.079550I
a = 2.29831 + 0.32828I
b = 0.704089 + 0.988971I
3.33114 + 4.88044I 0
u = 0.528635 1.079550I
a = 2.29831 0.32828I
b = 0.704089 0.988971I
3.33114 4.88044I 0
u = 0.722689 + 0.970599I
a = 0.741299 + 0.921828I
b = 0.083570 + 1.119970I
7.22715 4.57605I 0
u = 0.722689 0.970599I
a = 0.741299 0.921828I
b = 0.083570 1.119970I
7.22715 + 4.57605I 0
u = 0.358259 + 0.688871I
a = 0.879547 0.142406I
b = 0.452675 0.326769I
0.242270 + 1.201440I 3.56976 5.11662I
u = 0.358259 0.688871I
a = 0.879547 + 0.142406I
b = 0.452675 + 0.326769I
0.242270 1.201440I 3.56976 + 5.11662I
u = 0.709964 + 0.998104I
a = 0.727209 0.906231I
b = 0.095370 1.127510I
6.38097 + 10.41820I 0
u = 0.709964 0.998104I
a = 0.727209 + 0.906231I
b = 0.095370 + 1.127510I
6.38097 10.41820I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.638479 + 1.052860I
a = 2.22261 0.60109I
b = 0.692459 1.015440I
0.75759 8.53408I 0
u = 0.638479 1.052860I
a = 2.22261 + 0.60109I
b = 0.692459 + 1.015440I
0.75759 + 8.53408I 0
u = 0.128439 + 1.243580I
a = 1.41997 + 0.92023I
b = 0.789225 0.821137I
5.72877 + 3.22175I 0
u = 0.128439 1.243580I
a = 1.41997 0.92023I
b = 0.789225 + 0.821137I
5.72877 3.22175I 0
u = 0.045313 + 1.258340I
a = 1.69439 + 0.69129I
b = 0.779135 0.871630I
9.43059 2.92424I 0
u = 0.045313 1.258340I
a = 1.69439 0.69129I
b = 0.779135 + 0.871630I
9.43059 + 2.92424I 0
u = 0.211932 + 1.248480I
a = 1.90337 + 0.41008I
b = 0.764919 0.916036I
5.44080 9.05611I 0
u = 0.211932 1.248480I
a = 1.90337 0.41008I
b = 0.764919 + 0.916036I
5.44080 + 9.05611I 0
u = 0.605096 + 1.135060I
a = 0.565397 1.012220I
b = 0.815794 + 0.657405I
5.78450 5.48770I 0
u = 0.605096 1.135060I
a = 0.565397 + 1.012220I
b = 0.815794 0.657405I
5.78450 + 5.48770I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.701626 + 1.089850I
a = 0.417547 + 0.958298I
b = 0.819456 0.616638I
0.89248 + 5.41548I 0
u = 0.701626 1.089850I
a = 0.417547 0.958298I
b = 0.819456 + 0.616638I
0.89248 5.41548I 0
u = 0.587493 + 0.354318I
a = 1.107100 0.364526I
b = 0.334542 + 0.368918I
2.95310 + 3.72297I 0.94420 2.07309I
u = 0.587493 0.354318I
a = 1.107100 + 0.364526I
b = 0.334542 0.368918I
2.95310 3.72297I 0.94420 + 2.07309I
u = 0.669813 + 1.133570I
a = 2.03613 + 0.55346I
b = 0.711185 + 1.026810I
4.66603 + 11.22230I 0
u = 0.669813 1.133570I
a = 2.03613 0.55346I
b = 0.711185 1.026810I
4.66603 11.22230I 0
u = 0.748378 + 1.095500I
a = 1.99348 0.72388I
b = 0.698362 1.044580I
2.18107 11.11030I 0
u = 0.748378 1.095500I
a = 1.99348 + 0.72388I
b = 0.698362 + 1.044580I
2.18107 + 11.11030I 0
u = 0.711168 + 1.121910I
a = 0.443302 0.920203I
b = 0.831954 + 0.620163I
0.09597 11.25780I 0
u = 0.711168 1.121910I
a = 0.443302 + 0.920203I
b = 0.831954 0.620163I
0.09597 + 11.25780I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.536075 + 0.400740I
a = 1.39980 + 0.27771I
b = 0.260700 0.482970I
3.25787 + 1.87409I 0.41579 4.30108I
u = 0.536075 0.400740I
a = 1.39980 0.27771I
b = 0.260700 + 0.482970I
3.25787 1.87409I 0.41579 + 4.30108I
u = 0.757737 + 1.120540I
a = 1.94603 + 0.70259I
b = 0.704135 + 1.047940I
1.1974 + 17.0067I 0
u = 0.757737 1.120540I
a = 1.94603 0.70259I
b = 0.704135 1.047940I
1.1974 17.0067I 0
u = 0.548785 + 0.324950I
a = 0.777437 0.349360I
b = 0.540827 0.732581I
0.11105 + 1.45554I 0.54843 3.22563I
u = 0.548785 0.324950I
a = 0.777437 + 0.349360I
b = 0.540827 + 0.732581I
0.11105 1.45554I 0.54843 + 3.22563I
u = 0.456001
a = 0.952554
b = 0.199661
1.36800 6.81850
14
II. I
v
1
= ha, 2v
5
3v
4
3v
3
v
2
+ 5b + 9v 1, v
6
v
5
v
4
+ 3v
2
2v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
2
5
v
5
+
3
5
v
4
+ ···
9
5
v +
1
5
a
2
=
1
2
5
v
5
3
5
v
4
+ ··· +
9
5
v
6
5
a
6
=
2
5
v
5
+
3
5
v
4
+ ···
9
5
v +
1
5
2
5
v
5
+
3
5
v
4
+ ···
9
5
v +
6
5
a
1
=
2
5
v
5
3
5
v
4
+ ··· +
9
5
v
1
5
2
5
v
5
3
5
v
4
+ ··· +
9
5
v
6
5
a
8
=
v
0
a
10
=
v
0
a
7
=
v
4
v
2
5
v
5
+
3
5
v
4
+ ···
9
5
v +
6
5
a
11
=
2v
1
5
v
5
1
5
v
4
+ ··· +
3
5
v
2
5
a
12
=
6
5
v
5
+
1
5
v
4
+ ··· +
17
5
v
3
5
2
5
v
5
3
5
v
4
+ ··· +
9
5
v
6
5
(ii) Obstruction class = 1
(iii) Cusp Shapes =
14
5
v
5
+
21
5
v
4
+
11
5
v
3
+
2
5
v
2
58
5
v +
47
5
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
(u
2
u + 1)
3
c
2
(u
2
+ u + 1)
3
c
3
, c
8
, c
9
u
6
c
6
, c
10
(u
3
+ u
2
+ 2u + 1)
2
c
7
(u
3
u
2
+ 1)
2
c
11
(u
3
+ u
2
1)
2
c
12
(u
3
u
2
+ 2u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
8
, c
9
y
6
c
6
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
7
, c
11
(y
3
y
2
+ 2y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.024480 + 0.839835I
a = 0
b = 0.500000 0.866025I
3.02413 + 4.85801I 0.94625 7.60556I
v = 1.024480 0.839835I
a = 0
b = 0.500000 + 0.866025I
3.02413 4.85801I 0.94625 + 7.60556I
v = 1.239560 + 0.467306I
a = 0
b = 0.500000 + 0.866025I
3.02413 + 0.79824I 2.23639 + 1.26697I
v = 1.239560 0.467306I
a = 0
b = 0.500000 0.866025I
3.02413 0.79824I 2.23639 1.26697I
v = 0.284920 + 0.493496I
a = 0
b = 0.500000 0.866025I
1.11345 + 2.02988I 5.31735 5.84990I
v = 0.284920 0.493496I
a = 0
b = 0.500000 + 0.866025I
1.11345 2.02988I 5.31735 + 5.84990I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
((u
2
u + 1)
3
)(u
97
+ 34u
96
+ ··· + 11u 1)
c
2
((u
2
+ u + 1)
3
)(u
97
+ 4u
96
+ ··· + 3u + 1)
c
3
, c
8
u
6
(u
97
+ u
96
+ ··· 96u 64)
c
5
((u
2
u + 1)
3
)(u
97
+ 4u
96
+ ··· + 3u + 1)
c
6
((u
3
+ u
2
+ 2u + 1)
2
)(u
97
+ 3u
96
+ ··· 1136u 1297)
c
7
((u
3
u
2
+ 1)
2
)(u
97
3u
96
+ ··· + 4u 1)
c
9
u
6
(u
97
35u
96
+ ··· 52224u + 4096)
c
10
((u
3
+ u
2
+ 2u + 1)
2
)(u
97
31u
96
+ ··· 14u 1)
c
11
((u
3
+ u
2
1)
2
)(u
97
3u
96
+ ··· + 4u 1)
c
12
((u
3
u
2
+ 2u 1)
2
)(u
97
31u
96
+ ··· 14u 1)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
97
+ 62y
96
+ ··· + 555y 1)
c
2
, c
5
((y
2
+ y + 1)
3
)(y
97
+ 34y
96
+ ··· + 11y 1)
c
3
, c
8
y
6
(y
97
+ 35y
96
+ ··· 52224y 4096)
c
6
((y
3
+ 3y
2
+ 2y 1)
2
)(y
97
+ 13y
96
+ ··· 6.54765 × 10
7
y 1682209)
c
7
, c
11
((y
3
y
2
+ 2y 1)
2
)(y
97
31y
96
+ ··· 14y 1)
c
9
y
6
(y
97
+ 43y
96
+ ··· 2.00278 × 10
8
y 1.67772 × 10
7
)
c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
2
)(y
97
+ 73y
96
+ ··· + 50y 1)
20