12a
0176
(K12a
0176
)
A knot diagram
1
Linearized knot diagam
3 5 9 6 2 10 12 11 4 1 8 7
Solving Sequence
2,5
3
6,10
7 1 11 4 9 8 12
c
2
c
5
c
6
c
1
c
10
c
4
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h93u
72
418u
71
+ ··· + 8b 68, 11u
72
+ 5u
71
+ ··· + 8a 35, u
73
5u
72
+ ··· 7u + 1i
I
u
2
= h−au + b a, a
4
a
3
u a
2
u a
2
+ u, u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h93u
72
418u
71
+ · · · + 8b 68, 11u
72
+ 5u
71
+ · · · + 8a
35, u
73
5u
72
+ · · · 7u + 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u
2
a
6
=
u
u
a
10
=
11
8
u
72
5
8
u
71
+ ···
269
8
u +
35
8
11.6250u
72
+ 52.2500u
71
+ ··· 60.3750u + 8.50000
a
7
=
1
8
u
72
+
1
2
u
71
+ ···
1
8
u 1
1
8
u
71
+
1
2
u
70
+ ··· +
11
4
u
1
8
a
1
=
u
2
+ 1
u
4
a
11
=
11
2
u
72
+ 4u
71
+ ···
229
2
u +
37
2
26.5000u
72
+ 137.875u
71
+ ··· 219.250u + 33.6250
a
4
=
u
3
u
3
+ u
a
9
=
3.37500u
72
+ 8.12500u
71
+ ··· 101.625u + 16.1250
23.8750u
72
+ 120.500u
71
+ ··· 179.625u + 27.2500
a
8
=
1.37500u
72
+ 16.1250u
71
+ ··· 58.8750u + 8.62500
101
8
u
72
+
243
4
u
71
+ ···
677
8
u + 13
a
12
=
7
4
u
72
37
4
u
71
+ ··· +
37
2
u
3
2
21
8
u
72
89
8
u
71
+ ··· +
63
8
u
7
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
139
8
u
72
+
339
4
u
71
+ ···
861
8
u +
73
4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
73
+ 23u
72
+ ··· 7u 1
c
2
, c
5
u
73
+ 5u
72
+ ··· 7u 1
c
3
, c
9
u
73
+ u
72
+ ··· 384u 256
c
6
u
73
3u
72
+ ··· + 1455u 1009
c
7
, c
8
, c
11
c
12
u
73
3u
72
+ ··· + 5u 1
c
10
u
73
+ 21u
72
+ ··· + 34585u + 3971
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
73
+ 59y
72
+ ··· 779y 1
c
2
, c
5
y
73
+ 23y
72
+ ··· 7y 1
c
3
, c
9
y
73
45y
72
+ ··· + 638976y 65536
c
6
y
73
39y
72
+ ··· 96349267y 1018081
c
7
, c
8
, c
11
c
12
y
73
+ 85y
72
+ ··· 11y 1
c
10
y
73
19y
72
+ ··· + 205103581y 15768841
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.061031 + 0.988224I
a = 0.443695 0.459047I
b = 0.724621 0.580258I
3.27771 2.37789I 0
u = 0.061031 0.988224I
a = 0.443695 + 0.459047I
b = 0.724621 + 0.580258I
3.27771 + 2.37789I 0
u = 0.225938 + 1.037910I
a = 0.166934 0.176912I
b = 0.821680 + 0.445687I
1.40695 2.98844I 0
u = 0.225938 1.037910I
a = 0.166934 + 0.176912I
b = 0.821680 0.445687I
1.40695 + 2.98844I 0
u = 0.518783 + 0.940844I
a = 0.323471 + 0.705744I
b = 0.015920 + 0.894645I
0.10046 2.66980I 0
u = 0.518783 0.940844I
a = 0.323471 0.705744I
b = 0.015920 0.894645I
0.10046 + 2.66980I 0
u = 0.715152 + 0.803648I
a = 1.139520 + 0.387119I
b = 0.640803 1.009380I
8.18684 1.63882I 0
u = 0.715152 0.803648I
a = 1.139520 0.387119I
b = 0.640803 + 1.009380I
8.18684 + 1.63882I 0
u = 0.373664 + 1.042010I
a = 0.819992 0.035159I
b = 0.890346 0.754074I
1.042010 0.690934I 0
u = 0.373664 1.042010I
a = 0.819992 + 0.035159I
b = 0.890346 + 0.754074I
1.042010 + 0.690934I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.717261 + 0.854752I
a = 0.819762 + 0.064738I
b = 0.019915 + 1.100780I
1.69272 + 0.80380I 0
u = 0.717261 0.854752I
a = 0.819762 0.064738I
b = 0.019915 1.100780I
1.69272 0.80380I 0
u = 0.751631 + 0.827950I
a = 1.75700 1.36118I
b = 2.26394 0.53802I
3.44600 + 0.21774I 0
u = 0.751631 0.827950I
a = 1.75700 + 1.36118I
b = 2.26394 + 0.53802I
3.44600 0.21774I 0
u = 0.703331 + 0.876144I
a = 1.12934 + 1.54579I
b = 1.74415 + 1.00598I
1.23434 2.69793I 0
u = 0.703331 0.876144I
a = 1.12934 1.54579I
b = 1.74415 1.00598I
1.23434 + 2.69793I 0
u = 0.231481 + 1.101900I
a = 0.179153 + 0.561689I
b = 0.892539 0.338296I
0.16539 6.33155I 0
u = 0.231481 1.101900I
a = 0.179153 0.561689I
b = 0.892539 + 0.338296I
0.16539 + 6.33155I 0
u = 0.854843 + 0.737463I
a = 0.97759 1.56121I
b = 1.53845 0.36332I
5.77476 2.35899I 0
u = 0.854843 0.737463I
a = 0.97759 + 1.56121I
b = 1.53845 + 0.36332I
5.77476 + 2.35899I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.877139 + 0.718077I
a = 1.13328 + 1.73513I
b = 1.86444 + 0.47628I
7.65392 6.17000I 0
u = 0.877139 0.718077I
a = 1.13328 1.73513I
b = 1.86444 0.47628I
7.65392 + 6.17000I 0
u = 0.011705 + 0.860688I
a = 0.052223 + 0.967136I
b = 0.932645 + 0.558548I
2.42316 0.99351I 5.92732 + 3.87741I
u = 0.011705 0.860688I
a = 0.052223 0.967136I
b = 0.932645 0.558548I
2.42316 + 0.99351I 5.92732 3.87741I
u = 0.789311 + 0.824660I
a = 2.12466 + 1.44766I
b = 2.66983 + 0.45270I
11.52080 + 2.07129I 0
u = 0.789311 0.824660I
a = 2.12466 1.44766I
b = 2.66983 0.45270I
11.52080 2.07129I 0
u = 0.897183 + 0.709153I
a = 1.23173 1.88439I
b = 2.09388 0.61056I
15.7401 8.6060I 0
u = 0.897183 0.709153I
a = 1.23173 + 1.88439I
b = 2.09388 + 0.61056I
15.7401 + 8.6060I 0
u = 0.715229 + 0.893228I
a = 0.536474 0.487123I
b = 0.499667 1.216460I
1.57244 + 4.67543I 0
u = 0.715229 0.893228I
a = 0.536474 + 0.487123I
b = 0.499667 + 1.216460I
1.57244 4.67543I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.858736 + 0.779751I
a = 0.60446 + 1.54193I
b = 1.076970 + 0.610092I
8.88013 + 0.82331I 0
u = 0.858736 0.779751I
a = 0.60446 1.54193I
b = 1.076970 0.610092I
8.88013 0.82331I 0
u = 0.587723 + 1.000390I
a = 0.51702 1.42783I
b = 0.17444 1.64638I
6.38689 3.34175I 0
u = 0.587723 1.000390I
a = 0.51702 + 1.42783I
b = 0.17444 + 1.64638I
6.38689 + 3.34175I 0
u = 0.236324 + 1.136820I
a = 0.216812 0.826663I
b = 0.952968 + 0.243595I
8.01784 8.50189I 0
u = 0.236324 1.136820I
a = 0.216812 + 0.826663I
b = 0.952968 0.243595I
8.01784 + 8.50189I 0
u = 0.642269 + 0.533189I
a = 1.44113 + 0.31196I
b = 0.909868 + 0.853465I
7.73992 1.45409I 7.03228 + 2.97950I
u = 0.642269 0.533189I
a = 1.44113 0.31196I
b = 0.909868 0.853465I
7.73992 + 1.45409I 7.03228 2.97950I
u = 0.386720 + 1.102060I
a = 1.151370 0.153712I
b = 1.145290 + 0.823796I
8.94434 + 0.93346I 0
u = 0.386720 1.102060I
a = 1.151370 + 0.153712I
b = 1.145290 0.823796I
8.94434 0.93346I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.161589 + 0.815556I
a = 0.08027 + 1.73701I
b = 1.38565 + 0.62057I
5.75319 + 4.41448I 0.071981 1.204152I
u = 0.161589 0.815556I
a = 0.08027 1.73701I
b = 1.38565 0.62057I
5.75319 4.41448I 0.071981 + 1.204152I
u = 0.709045 + 0.936655I
a = 0.200425 + 1.044420I
b = 1.10352 + 1.40660I
7.77191 + 7.10200I 0
u = 0.709045 0.936655I
a = 0.200425 1.044420I
b = 1.10352 1.40660I
7.77191 7.10200I 0
u = 0.085563 + 0.820766I
a = 0.030152 1.397210I
b = 1.154110 0.576548I
1.57706 + 2.30309I 2.80955 3.48929I
u = 0.085563 0.820766I
a = 0.030152 + 1.397210I
b = 1.154110 + 0.576548I
1.57706 2.30309I 2.80955 + 3.48929I
u = 0.736971 + 0.917281I
a = 1.16448 2.10961I
b = 2.02664 1.52743I
3.17218 5.86940I 0
u = 0.736971 0.917281I
a = 1.16448 + 2.10961I
b = 2.02664 + 1.52743I
3.17218 + 5.86940I 0
u = 0.810712 + 0.097990I
a = 0.550183 0.371106I
b = 1.117360 0.604474I
12.19710 5.07416I 9.95336 + 3.32776I
u = 0.810712 0.097990I
a = 0.550183 + 0.371106I
b = 1.117360 + 0.604474I
12.19710 + 5.07416I 9.95336 3.32776I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.885484 + 0.802555I
a = 0.31616 1.77942I
b = 0.904553 1.071020I
17.5514 + 2.3531I 0
u = 0.885484 0.802555I
a = 0.31616 + 1.77942I
b = 0.904553 + 1.071020I
17.5514 2.3531I 0
u = 0.440972 + 0.666613I
a = 0.915006 0.235271I
b = 0.765196 0.346372I
0.70719 1.37392I 6.54862 + 4.55339I
u = 0.440972 0.666613I
a = 0.915006 + 0.235271I
b = 0.765196 + 0.346372I
0.70719 + 1.37392I 6.54862 4.55339I
u = 0.760835 + 0.932568I
a = 1.29393 + 2.43000I
b = 2.28636 + 1.77924I
11.18770 7.91039I 0
u = 0.760835 0.932568I
a = 1.29393 2.43000I
b = 2.28636 1.77924I
11.18770 + 7.91039I 0
u = 0.753565 + 0.082487I
a = 0.721227 + 0.258241I
b = 0.834537 + 0.418462I
4.10320 3.11301I 8.46380 + 5.00455I
u = 0.753565 0.082487I
a = 0.721227 0.258241I
b = 0.834537 0.418462I
4.10320 + 3.11301I 8.46380 5.00455I
u = 0.782341 + 0.985456I
a = 1.20777 + 0.80647I
b = 2.05755 + 0.44861I
8.23968 + 5.28180I 0
u = 0.782341 0.985456I
a = 1.20777 0.80647I
b = 2.05755 0.44861I
8.23968 5.28180I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.761516 + 1.008750I
a = 1.23045 1.35600I
b = 2.34331 0.87664I
4.93630 + 8.38429I 0
u = 0.761516 1.008750I
a = 1.23045 + 1.35600I
b = 2.34331 + 0.87664I
4.93630 8.38429I 0
u = 0.811502 + 0.986113I
a = 1.56384 0.43043I
b = 2.16930 + 0.04197I
16.9773 + 3.9268I 0
u = 0.811502 0.986113I
a = 1.56384 + 0.43043I
b = 2.16930 0.04197I
16.9773 3.9268I 0
u = 0.764032 + 1.027340I
a = 1.48760 + 1.57665I
b = 2.64607 + 0.93109I
6.69651 + 12.26470I 0
u = 0.764032 1.027340I
a = 1.48760 1.57665I
b = 2.64607 0.93109I
6.69651 12.26470I 0
u = 0.768706 + 1.040500I
a = 1.71369 1.70604I
b = 2.88056 0.93363I
14.7102 + 14.7725I 0
u = 0.768706 1.040500I
a = 1.71369 + 1.70604I
b = 2.88056 + 0.93363I
14.7102 14.7725I 0
u = 0.677649
a = 0.901471
b = 0.554098
1.96978 4.04310
u = 0.324856 + 0.303719I
a = 0.84450 + 1.41509I
b = 0.866089 0.815927I
7.15764 2.51422I 4.29524 + 3.51135I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.324856 0.303719I
a = 0.84450 1.41509I
b = 0.866089 + 0.815927I
7.15764 + 2.51422I 4.29524 3.51135I
u = 0.171616 + 0.146966I
a = 0.80395 1.95618I
b = 0.367565 + 0.544328I
0.038818 1.169610I 0.66472 + 6.00737I
u = 0.171616 0.146966I
a = 0.80395 + 1.95618I
b = 0.367565 0.544328I
0.038818 + 1.169610I 0.66472 6.00737I
12
II. I
u
2
= h−au + b a, a
4
a
3
u a
2
u a
2
+ u, u
2
+ u + 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
0
u
a
3
=
1
u + 1
a
6
=
u
u
a
10
=
a
au + a
a
7
=
a
2
u + a
2
+ u
a
2
u + u
a
1
=
u
u
a
11
=
2a
au + 2a
a
4
=
1
u + 1
a
9
=
a
au + a
a
8
=
2a
3
u + a
a
3
u a
3
+ au + a
a
12
=
a
3
u + 2a
2
u + 2a
2
2u
a
3
+ 2a
2
u + a
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5a
2
u 2a
2
4au 5a + 5u + 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
3
, c
9
u
8
c
6
, c
10
(u
4
u
3
+ u
2
+ 1)
2
c
7
, c
8
(u
4
u
3
+ 3u
2
2u + 1)
2
c
11
, c
12
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
4
c
3
, c
9
y
8
c
6
, c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
7
, c
8
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.447930 0.664845I
b = 0.351808 0.720342I
0.21101 3.44499I 0.99907 + 9.21934I
u = 0.500000 + 0.866025I
a = 0.799738 + 0.055496I
b = 0.351808 + 0.720342I
0.211005 0.614778I 2.00436 1.31849I
u = 0.500000 + 0.866025I
a = 0.363298 + 1.193330I
b = 0.851808 + 0.911292I
6.79074 5.19385I 5.65243 + 5.51994I
u = 0.500000 + 0.866025I
a = 1.215110 + 0.282041I
b = 0.851808 0.911292I
6.79074 + 1.13408I 1.85285 + 1.30164I
u = 0.500000 0.866025I
a = 0.447930 + 0.664845I
b = 0.351808 + 0.720342I
0.21101 + 3.44499I 0.99907 9.21934I
u = 0.500000 0.866025I
a = 0.799738 0.055496I
b = 0.351808 0.720342I
0.211005 + 0.614778I 2.00436 + 1.31849I
u = 0.500000 0.866025I
a = 0.363298 1.193330I
b = 0.851808 0.911292I
6.79074 + 5.19385I 5.65243 5.51994I
u = 0.500000 0.866025I
a = 1.215110 0.282041I
b = 0.851808 + 0.911292I
6.79074 1.13408I 1.85285 1.30164I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
((u
2
u + 1)
4
)(u
73
+ 23u
72
+ ··· 7u 1)
c
2
((u
2
+ u + 1)
4
)(u
73
+ 5u
72
+ ··· 7u 1)
c
3
, c
9
u
8
(u
73
+ u
72
+ ··· 384u 256)
c
5
((u
2
u + 1)
4
)(u
73
+ 5u
72
+ ··· 7u 1)
c
6
((u
4
u
3
+ u
2
+ 1)
2
)(u
73
3u
72
+ ··· + 1455u 1009)
c
7
, c
8
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
73
3u
72
+ ··· + 5u 1)
c
10
((u
4
u
3
+ u
2
+ 1)
2
)(u
73
+ 21u
72
+ ··· + 34585u + 3971)
c
11
, c
12
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
73
3u
72
+ ··· + 5u 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
4
)(y
73
+ 59y
72
+ ··· 779y 1)
c
2
, c
5
((y
2
+ y + 1)
4
)(y
73
+ 23y
72
+ ··· 7y 1)
c
3
, c
9
y
8
(y
73
45y
72
+ ··· + 638976y 65536)
c
6
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
· (y
73
39y
72
+ ··· 96349267y 1018081)
c
7
, c
8
, c
11
c
12
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
73
+ 85y
72
+ ··· 11y 1)
c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
· (y
73
19y
72
+ ··· + 205103581y 15768841)
18