10
13
(K10a
54
)
A knot diagram
1
Linearized knot diagam
9 4 7 1 10 8 3 2 6 5
Solving Sequence
6,9
10 5 1 2 4 8 7 3
c
9
c
5
c
10
c
1
c
4
c
8
c
6
c
3
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
26
+ u
25
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 26 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
26
+ u
25
+ · · · u + 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
4
+ 3u
2
+ 1
u
4
+ 2u
2
a
4
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
8
=
u
8
+ 5u
6
+ 7u
4
+ 2u
2
+ 1
u
8
+ 4u
6
+ 4u
4
a
7
=
u
17
10u
15
39u
13
74u
11
71u
9
38u
7
18u
5
4u
3
u
u
17
9u
15
31u
13
50u
11
37u
9
12u
7
4u
5
+ u
a
3
=
u
12
+ 7u
10
+ 17u
8
+ 16u
6
+ 6u
4
+ 5u
2
+ 1
u
14
+ 8u
12
+ 23u
10
+ 28u
8
+ 14u
6
+ 6u
4
+ 3u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
24
+ 4u
23
+ 56u
22
+ 52u
21
+ 332u
20
+ 284u
19
+ 1080u
18
+
844u
17
+ 2096u
16
+ 1484u
15
+ 2508u
14
+ 1596u
13
+ 1940u
12
+ 1096u
11
+ 1112u
10
+
540u
9
+ 504u
8
+ 212u
7
+ 132u
6
+ 60u
5
+ 48u
4
+ 12u
3
+ 16u
2
+ 12u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
26
+ 5u
25
+ ··· + 5u + 3
c
2
, c
6
u
26
+ 9u
25
+ ··· + 5u + 1
c
3
, c
7
u
26
u
25
+ ··· u + 1
c
4
, c
5
, c
9
c
10
u
26
u
25
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
26
+ 13y
25
+ ··· + 161y + 9
c
2
, c
6
y
26
+ 17y
25
+ ··· + 29y + 1
c
3
, c
7
y
26
+ 9y
25
+ ··· + 5y + 1
c
4
, c
5
, c
9
c
10
y
26
+ 29y
25
+ ··· + 5y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.557205 + 0.605601I
0.14856 + 7.92757I 1.52051 8.33110I
u = 0.557205 0.605601I
0.14856 7.92757I 1.52051 + 8.33110I
u = 0.063283 + 0.808616I
3.72335 2.64715I 4.54618 + 3.67555I
u = 0.063283 0.808616I
3.72335 + 2.64715I 4.54618 3.67555I
u = 0.506771 + 0.602442I
0.97512 2.50037I 0.62782 + 3.68649I
u = 0.506771 0.602442I
0.97512 + 2.50037I 0.62782 3.68649I
u = 0.565256 + 0.486664I
4.58704 + 1.94179I 7.39486 3.84898I
u = 0.565256 0.486664I
4.58704 1.94179I 7.39486 + 3.84898I
u = 0.588033 + 0.339866I
0.92248 4.00629I 3.77829 + 2.28167I
u = 0.588033 0.339866I
0.92248 + 4.00629I 3.77829 2.28167I
u = 0.489623 + 0.284759I
0.114247 1.005510I 2.42231 + 3.62739I
u = 0.489623 0.284759I
0.114247 + 1.005510I 2.42231 3.62739I
u = 0.08778 + 1.44888I
4.66701 1.77746I 0.37085 + 2.67865I
u = 0.08778 1.44888I
4.66701 + 1.77746I 0.37085 2.67865I
u = 0.304550 + 0.390095I
0.062024 0.992541I 1.03716 + 6.67512I
u = 0.304550 0.390095I
0.062024 + 0.992541I 1.03716 6.67512I
u = 0.15393 + 1.51610I
2.02080 + 4.47678I 3.30340 3.58620I
u = 0.15393 1.51610I
2.02080 4.47678I 3.30340 + 3.58620I
u = 0.09394 + 1.52190I
6.42783 2.46970I 3.58807 + 2.77943I
u = 0.09394 1.52190I
6.42783 + 2.46970I 3.58807 2.77943I
u = 0.14965 + 1.56671I
8.26058 4.90123I 3.70149 + 2.20839I
u = 0.14965 1.56671I
8.26058 + 4.90123I 3.70149 2.20839I
u = 0.16684 + 1.56649I
7.11908 + 10.57850I 1.76076 6.94484I
u = 0.16684 1.56649I
7.11908 10.57850I 1.76076 + 6.94484I
u = 0.01123 + 1.60251I
11.89050 2.88146I 5.60306 + 2.87824I
u = 0.01123 1.60251I
11.89050 + 2.88146I 5.60306 2.87824I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
u
26
+ 5u
25
+ ··· + 5u + 3
c
2
, c
6
u
26
+ 9u
25
+ ··· + 5u + 1
c
3
, c
7
u
26
u
25
+ ··· u + 1
c
4
, c
5
, c
9
c
10
u
26
u
25
+ ··· + u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
26
+ 13y
25
+ ··· + 161y + 9
c
2
, c
6
y
26
+ 17y
25
+ ··· + 29y + 1
c
3
, c
7
y
26
+ 9y
25
+ ··· + 5y + 1
c
4
, c
5
, c
9
c
10
y
26
+ 29y
25
+ ··· + 5y + 1
7