12a
0181
(K12a
0181
)
A knot diagram
1
Linearized knot diagam
3 5 9 6 2 12 10 4 8 1 7 11
Solving Sequence
3,9 4,5
2 6 1 8 10 11 7 12
c
3
c
2
c
5
c
1
c
8
c
9
c
10
c
7
c
12
c
4
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
19
+ 3u
18
+ ··· + 4b + 2u, u
18
3u
17
+ ··· + 4a 6, u
20
+ 5u
19
+ ··· + 12u + 4i
I
u
2
= h−82u
32
a + 53u
32
+ ··· + 116a + 32, 2u
32
a + u
32
+ ··· + 12a 17, u
33
2u
32
+ ··· u + 2i
I
v
1
= ha, b
2
+ b + 1, v + 1i
I
v
2
= ha, b v + 1, v
2
v + 1i
* 4 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
19
+3u
18
+· · ·+4b+2u, u
18
3u
17
+· · ·+4a6, u
20
+5u
19
+· · ·+12u+4i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
1
4
u
18
+
3
4
u
17
+ ··· + u +
3
2
1
4
u
19
3
4
u
18
+ ···
9
4
u
3
1
2
u
a
2
=
7
4
u
19
8u
18
+ ··· 15u
9
2
3
4
u
19
15
4
u
18
+ ···
19
2
u 4
a
6
=
7
4
u
19
8u
18
+ ··· 15u
9
2
9
4
u
19
+
31
4
u
18
+ ··· +
15
2
u + 1
a
1
=
5
2
u
19
47
4
u
18
+ ···
49
2
u
17
2
3
4
u
19
15
4
u
18
+ ···
19
2
u 4
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
1
4
u
19
u
18
+ ···
3
2
u
1
2
1
4
u
19
5
4
u
18
+ ···
3
2
u 1
a
7
=
u
5
+ u
u
7
+ u
5
+ 2u
3
+ u
a
12
=
7
4
u
19
7u
18
+ ···
21
2
u
7
2
7
4
u
19
37
4
u
18
+ ···
37
2
u 8
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 13u
19
66u
18
180u
17
337u
16
477u
15
527u
14
374u
13
30u
12
+ 397u
11
+
641u
10
+ 698u
9
+ 494u
8
+ 210u
7
106u
6
168u
5
196u
4
209u
3
259u
2
158u 62
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
10
c
12
u
20
+ 7u
19
+ ··· + 6u + 1
c
2
, c
5
, c
6
c
11
u
20
+ u
19
+ ··· 2u + 1
c
3
, c
8
u
20
+ 5u
19
+ ··· + 12u + 4
c
7
, c
9
u
20
5u
19
+ ··· 48u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
10
c
12
y
20
+ 15y
19
+ ··· + 42y + 1
c
2
, c
5
, c
6
c
11
y
20
+ 7y
19
+ ··· + 6y + 1
c
3
, c
8
y
20
+ 5y
19
+ ··· + 48y + 16
c
7
, c
9
y
20
+ 13y
19
+ ··· + 2560y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.956413 + 0.106188I
a = 0.666389 0.362681I
b = 0.690206 0.870989I
3.29641 + 5.31416I 3.14759 6.32881I
u = 0.956413 0.106188I
a = 0.666389 + 0.362681I
b = 0.690206 + 0.870989I
3.29641 5.31416I 3.14759 + 6.32881I
u = 0.859253 + 0.598044I
a = 0.726799 0.250535I
b = 0.710902 0.608435I
0.831191 + 0.623147I 2.59573 2.24523I
u = 0.859253 0.598044I
a = 0.726799 + 0.250535I
b = 0.710902 + 0.608435I
0.831191 0.623147I 2.59573 + 2.24523I
u = 0.511571 + 0.639622I
a = 1.075070 + 0.676318I
b = 0.102085 + 0.859228I
2.97361 1.87280I 8.34696 + 4.79097I
u = 0.511571 0.639622I
a = 1.075070 0.676318I
b = 0.102085 0.859228I
2.97361 + 1.87280I 8.34696 4.79097I
u = 0.193921 + 1.176600I
a = 1.33172 1.10006I
b = 0.775256 + 0.795478I
8.04637 + 1.61009I 7.70402 2.24180I
u = 0.193921 1.176600I
a = 1.33172 + 1.10006I
b = 0.775256 0.795478I
8.04637 1.61009I 7.70402 + 2.24180I
u = 0.962446 + 0.718212I
a = 0.613669 + 0.425585I
b = 0.666520 + 1.031640I
1.66717 10.06630I 1.36976 + 7.52063I
u = 0.962446 0.718212I
a = 0.613669 0.425585I
b = 0.666520 1.031640I
1.66717 + 10.06630I 1.36976 7.52063I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.824880 + 0.894608I
a = 0.753015 1.021300I
b = 0.023434 1.120850I
9.84057 + 3.07245I 9.39268 2.83211I
u = 0.824880 0.894608I
a = 0.753015 + 1.021300I
b = 0.023434 + 1.120850I
9.84057 3.07245I 9.39268 + 2.83211I
u = 0.337755 + 1.176280I
a = 2.12989 + 0.17473I
b = 0.738480 0.944822I
7.12649 9.83704I 5.40465 + 9.06026I
u = 0.337755 1.176280I
a = 2.12989 0.17473I
b = 0.738480 + 0.944822I
7.12649 + 9.83704I 5.40465 9.06026I
u = 0.716852 + 1.049790I
a = 0.357717 + 0.974184I
b = 0.809192 0.602967I
2.16361 + 5.20834I 3.98742 2.19274I
u = 0.716852 1.049790I
a = 0.357717 0.974184I
b = 0.809192 + 0.602967I
2.16361 5.20834I 3.98742 + 2.19274I
u = 0.342141 + 0.579550I
a = 0.950288 0.152216I
b = 0.318780 0.354384I
0.155657 + 1.086730I 2.50050 5.83378I
u = 0.342141 0.579550I
a = 0.950288 + 0.152216I
b = 0.318780 + 0.354384I
0.155657 1.086730I 2.50050 + 5.83378I
u = 0.794089 + 1.065150I
a = 1.96591 + 0.82985I
b = 0.688998 + 1.054600I
0.5586 + 16.5027I 0.23050 11.16239I
u = 0.794089 1.065150I
a = 1.96591 0.82985I
b = 0.688998 1.054600I
0.5586 16.5027I 0.23050 + 11.16239I
6
II. I
u
2
= h−82u
32
a + 53u
32
+ · · · + 116a + 32, 2u
32
a + u
32
+ · · · + 12a
17, u
33
2u
32
+ · · · u + 2i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
a
1.20588au
32
0.779412u
32
+ ··· 1.70588a 0.470588
a
2
=
1.27941au
32
0.147059u
32
+ ··· + 0.470588a 1.60294
0.514706au
32
+ 0.426471u
32
+ ··· 1.26471a 0.176471
a
6
=
1.27941au
32
0.147059u
32
+ ··· + 0.470588a 1.60294
0.647059au
32
1.26471u
32
+ ··· 1.35294a + 2.26471
a
1
=
1.79412au
32
+ 0.279412u
32
+ ··· 0.794118a 1.77941
0.514706au
32
+ 0.426471u
32
+ ··· 1.26471a 0.176471
a
8
=
u
u
3
+ u
a
10
=
u
3
u
5
+ u
3
+ u
a
11
=
0.911765au
32
+ 1.05882u
32
+ ··· + 2.91176a 1.30882
u
32
+ 2u
31
+ ···
1
2
u + 2
a
7
=
u
5
+ u
u
7
+ u
5
+ 2u
3
+ u
a
12
=
0.911765au
32
+ 1.55882u
32
+ ··· + 2.91176a 0.308824
1.35294au
32
1.01471u
32
+ ··· 1.35294a + 1.26471
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
32
2u
31
3u
30
8u
29
11u
28
28u
27
26u
26
60u
25
55u
24
114u
23
106u
22
160u
21
162u
20
198u
19
234u
18
196u
17
257u
16
162u
15
244u
14
124u
13
166u
12
72u
11
64u
10
54u
9
+ 4u
8
28u
7
+ 34u
6
16u
5
+ 22u
4
6u
3
+ 4u
2
2u + 1
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
10
c
12
u
66
+ 24u
65
+ ··· + 17u + 1
c
2
, c
5
, c
6
c
11
u
66
+ 2u
65
+ ··· + u + 1
c
3
, c
8
(u
33
2u
32
+ ··· u + 2)
2
c
7
, c
9
(u
33
10u
32
+ ··· 23u + 4)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
10
c
12
y
66
+ 36y
65
+ ··· + 97y + 1
c
2
, c
5
, c
6
c
11
y
66
+ 24y
65
+ ··· + 17y + 1
c
3
, c
8
(y
33
+ 10y
32
+ ··· 23y 4)
2
c
7
, c
9
(y
33
+ 26y
32
+ ··· 335y 16)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.049702 + 0.985538I
a = 0.804899 0.013377I
b = 0.628084 0.033140I
4.01597 + 2.68651I 7.73425 3.44417I
u = 0.049702 + 0.985538I
a = 2.27679 1.25073I
b = 0.701064 + 0.855945I
4.01597 + 2.68651I 7.73425 3.44417I
u = 0.049702 0.985538I
a = 0.804899 + 0.013377I
b = 0.628084 + 0.033140I
4.01597 2.68651I 7.73425 + 3.44417I
u = 0.049702 0.985538I
a = 2.27679 + 1.25073I
b = 0.701064 0.855945I
4.01597 2.68651I 7.73425 + 3.44417I
u = 0.665379 + 0.776145I
a = 0.635938 0.460788I
b = 0.589255 1.034860I
0.77598 + 2.47863I 0.24297 1.77615I
u = 0.665379 + 0.776145I
a = 0.110839 1.231880I
b = 0.688258 + 0.559125I
0.77598 + 2.47863I 0.24297 1.77615I
u = 0.665379 0.776145I
a = 0.635938 + 0.460788I
b = 0.589255 + 1.034860I
0.77598 2.47863I 0.24297 + 1.77615I
u = 0.665379 0.776145I
a = 0.110839 + 1.231880I
b = 0.688258 0.559125I
0.77598 2.47863I 0.24297 + 1.77615I
u = 0.949159
a = 0.675796 + 0.350096I
b = 0.692476 + 0.839598I
3.39234 3.61540
u = 0.949159
a = 0.675796 0.350096I
b = 0.692476 0.839598I
3.39234 3.61540
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.613502 + 0.901064I
a = 0.759830 0.160326I
b = 0.702709 0.395207I
0.98851 + 2.36009I 3.77869 2.94560I
u = 0.613502 + 0.901064I
a = 0.213518 + 1.274820I
b = 0.731665 0.610211I
0.98851 + 2.36009I 3.77869 2.94560I
u = 0.613502 0.901064I
a = 0.759830 + 0.160326I
b = 0.702709 + 0.395207I
0.98851 2.36009I 3.77869 + 2.94560I
u = 0.613502 0.901064I
a = 0.213518 1.274820I
b = 0.731665 + 0.610211I
0.98851 2.36009I 3.77869 + 2.94560I
u = 0.234138 + 0.867139I
a = 0.767729 + 0.625996I
b = 0.302796 + 1.009580I
0.87226 5.71730I 1.14087 + 8.70218I
u = 0.234138 + 0.867139I
a = 3.20869 + 0.72540I
b = 0.660835 0.903263I
0.87226 5.71730I 1.14087 + 8.70218I
u = 0.234138 0.867139I
a = 0.767729 0.625996I
b = 0.302796 1.009580I
0.87226 + 5.71730I 1.14087 8.70218I
u = 0.234138 0.867139I
a = 3.20869 0.72540I
b = 0.660835 + 0.903263I
0.87226 + 5.71730I 1.14087 8.70218I
u = 0.702940 + 0.870739I
a = 0.621937 + 0.465792I
b = 0.595356 + 1.060450I
2.09778 + 2.69718I 1.77480 3.09544I
u = 0.702940 + 0.870739I
a = 2.43936 + 1.09343I
b = 0.644093 + 1.024190I
2.09778 + 2.69718I 1.77480 3.09544I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.702940 0.870739I
a = 0.621937 0.465792I
b = 0.595356 1.060450I
2.09778 2.69718I 1.77480 + 3.09544I
u = 0.702940 0.870739I
a = 2.43936 1.09343I
b = 0.644093 1.024190I
2.09778 2.69718I 1.77480 + 3.09544I
u = 0.788902 + 0.806240I
a = 0.733919 + 0.201231I
b = 0.735371 + 0.501044I
4.43280 1.52216I 3.69925 + 2.61889I
u = 0.788902 + 0.806240I
a = 0.842836 + 1.040260I
b = 0.006541 + 1.075980I
4.43280 1.52216I 3.69925 + 2.61889I
u = 0.788902 0.806240I
a = 0.733919 0.201231I
b = 0.735371 0.501044I
4.43280 + 1.52216I 3.69925 2.61889I
u = 0.788902 0.806240I
a = 0.842836 1.040260I
b = 0.006541 1.075980I
4.43280 + 1.52216I 3.69925 2.61889I
u = 0.920485 + 0.670333I
a = 0.621962 0.425064I
b = 0.657901 1.017940I
0.37164 + 4.66065I 0.61587 2.80152I
u = 0.920485 + 0.670333I
a = 0.712997 + 0.235993I
b = 0.751562 + 0.591432I
0.37164 + 4.66065I 0.61587 2.80152I
u = 0.920485 0.670333I
a = 0.621962 + 0.425064I
b = 0.657901 + 1.017940I
0.37164 4.66065I 0.61587 + 2.80152I
u = 0.920485 0.670333I
a = 0.712997 0.235993I
b = 0.751562 0.591432I
0.37164 4.66065I 0.61587 + 2.80152I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.845575 + 0.795122I
a = 0.616836 + 0.443798I
b = 0.634247 + 1.046440I
5.99253 3.68906I 6.07547 + 2.52126I
u = 0.845575 + 0.795122I
a = 0.816085 1.096950I
b = 0.018187 1.093160I
5.99253 3.68906I 6.07547 + 2.52126I
u = 0.845575 0.795122I
a = 0.616836 0.443798I
b = 0.634247 1.046440I
5.99253 + 3.68906I 6.07547 2.52126I
u = 0.845575 0.795122I
a = 0.816085 + 1.096950I
b = 0.018187 + 1.093160I
5.99253 + 3.68906I 6.07547 2.52126I
u = 0.679751 + 0.948328I
a = 0.740250 + 0.160964I
b = 0.746944 + 0.406974I
0.22436 7.71485I 1.58056 + 7.57230I
u = 0.679751 + 0.948328I
a = 2.35312 0.86592I
b = 0.664524 1.021430I
0.22436 7.71485I 1.58056 + 7.57230I
u = 0.679751 0.948328I
a = 0.740250 0.160964I
b = 0.746944 0.406974I
0.22436 + 7.71485I 1.58056 7.57230I
u = 0.679751 0.948328I
a = 2.35312 + 0.86592I
b = 0.664524 + 1.021430I
0.22436 + 7.71485I 1.58056 7.57230I
u = 0.105432 + 0.816987I
a = 0.746933 0.576307I
b = 0.361341 0.997749I
1.188190 + 0.603355I 3.29363 1.93093I
u = 0.105432 + 0.816987I
a = 1.96741 + 2.42976I
b = 0.654202 0.802439I
1.188190 + 0.603355I 3.29363 1.93093I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.105432 0.816987I
a = 0.746933 + 0.576307I
b = 0.361341 + 0.997749I
1.188190 0.603355I 3.29363 + 1.93093I
u = 0.105432 0.816987I
a = 1.96741 2.42976I
b = 0.654202 + 0.802439I
1.188190 0.603355I 3.29363 + 1.93093I
u = 0.750104 + 0.942029I
a = 0.186018 1.000410I
b = 0.778688 + 0.566100I
4.01232 4.27816I 2.78151 + 3.10265I
u = 0.750104 + 0.942029I
a = 0.751867 + 0.949236I
b = 0.065283 + 1.116190I
4.01232 4.27816I 2.78151 + 3.10265I
u = 0.750104 0.942029I
a = 0.186018 + 1.000410I
b = 0.778688 0.566100I
4.01232 + 4.27816I 2.78151 3.10265I
u = 0.750104 0.942029I
a = 0.751867 0.949236I
b = 0.065283 1.116190I
4.01232 + 4.27816I 2.78151 3.10265I
u = 0.267647 + 1.175100I
a = 1.17158 + 1.12572I
b = 0.782054 0.772553I
7.64872 + 4.10928I 6.76207 3.53487I
u = 0.267647 + 1.175100I
a = 2.10317 0.34278I
b = 0.742093 + 0.926355I
7.64872 + 4.10928I 6.76207 3.53487I
u = 0.267647 1.175100I
a = 1.17158 1.12572I
b = 0.782054 + 0.772553I
7.64872 4.10928I 6.76207 + 3.53487I
u = 0.267647 1.175100I
a = 2.10317 + 0.34278I
b = 0.742093 0.926355I
7.64872 4.10928I 6.76207 + 3.53487I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.777774 + 0.973678I
a = 0.721347 0.956074I
b = 0.063549 1.135640I
5.43107 + 9.74498I 4.76319 7.62687I
u = 0.777774 + 0.973678I
a = 2.11190 + 0.96967I
b = 0.666975 + 1.046950I
5.43107 + 9.74498I 4.76319 7.62687I
u = 0.777774 0.973678I
a = 0.721347 + 0.956074I
b = 0.063549 + 1.135640I
5.43107 9.74498I 4.76319 + 7.62687I
u = 0.777774 0.973678I
a = 2.11190 0.96967I
b = 0.666975 1.046950I
5.43107 9.74498I 4.76319 + 7.62687I
u = 0.759296 + 1.058880I
a = 0.337168 0.916661I
b = 0.821726 + 0.590691I
0.83529 10.84000I 1.88810 + 6.73875I
u = 0.759296 + 1.058880I
a = 2.02862 0.79380I
b = 0.688861 1.045760I
0.83529 10.84000I 1.88810 + 6.73875I
u = 0.759296 1.058880I
a = 0.337168 + 0.916661I
b = 0.821726 0.590691I
0.83529 + 10.84000I 1.88810 6.73875I
u = 0.759296 1.058880I
a = 2.02862 + 0.79380I
b = 0.688861 + 1.045760I
0.83529 + 10.84000I 1.88810 6.73875I
u = 0.525723 + 0.430540I
a = 0.685556 0.437340I
b = 0.568437 0.942925I
0.58470 + 2.92924I 3.69112 1.50327I
u = 0.525723 + 0.430540I
a = 1.65240 + 0.02104I
b = 0.192277 + 0.600483I
0.58470 + 2.92924I 3.69112 1.50327I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.525723 0.430540I
a = 0.685556 + 0.437340I
b = 0.568437 + 0.942925I
0.58470 2.92924I 3.69112 + 1.50327I
u = 0.525723 0.430540I
a = 1.65240 0.02104I
b = 0.192277 0.600483I
0.58470 2.92924I 3.69112 + 1.50327I
u = 0.486625 + 0.301249I
a = 1.095810 + 0.119505I
b = 0.185860 0.292702I
0.09834 + 1.49688I 1.55937 4.19988I
u = 0.486625 + 0.301249I
a = 0.781578 0.368136I
b = 0.519509 0.755598I
0.09834 + 1.49688I 1.55937 4.19988I
u = 0.486625 0.301249I
a = 1.095810 0.119505I
b = 0.185860 + 0.292702I
0.09834 1.49688I 1.55937 + 4.19988I
u = 0.486625 0.301249I
a = 0.781578 + 0.368136I
b = 0.519509 + 0.755598I
0.09834 1.49688I 1.55937 + 4.19988I
16
III. I
v
1
= ha, b
2
+ b + 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
5
=
0
b
a
2
=
1
b 1
a
6
=
b
b + 1
a
1
=
b
b 1
a
8
=
1
0
a
10
=
1
0
a
11
=
0
b
a
7
=
1
0
a
12
=
b
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8b + 4
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
, c
11
u
2
u + 1
c
2
, c
6
, c
12
u
2
+ u + 1
c
3
, c
7
, c
8
c
9
u
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
10
c
11
, c
12
y
2
+ y + 1
c
3
, c
7
, c
8
c
9
y
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. + 6.92820I
v = 1.00000
a = 0
b = 0.500000 0.866025I
4.05977I 0. 6.92820I
20
IV. I
v
2
= ha, b v + 1, v
2
v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
v 1
a
2
=
1
v
a
6
=
v 1
v
a
1
=
v + 1
v
a
8
=
v
0
a
10
=
v
0
a
11
=
0
1
a
7
=
v
0
a
12
=
v + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
, c
11
u
2
u + 1
c
2
, c
6
, c
12
u
2
+ u + 1
c
3
, c
7
, c
8
c
9
u
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
10
c
11
, c
12
y
2
+ y + 1
c
3
, c
7
, c
8
c
9
y
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
0 3.00000
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
0 3.00000
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
10
((u
2
u + 1)
2
)(u
20
+ 7u
19
+ ··· + 6u + 1)(u
66
+ 24u
65
+ ··· + 17u + 1)
c
2
, c
6
((u
2
+ u + 1)
2
)(u
20
+ u
19
+ ··· 2u + 1)(u
66
+ 2u
65
+ ··· + u + 1)
c
3
, c
8
u
4
(u
20
+ 5u
19
+ ··· + 12u + 4)(u
33
2u
32
+ ··· u + 2)
2
c
5
, c
11
((u
2
u + 1)
2
)(u
20
+ u
19
+ ··· 2u + 1)(u
66
+ 2u
65
+ ··· + u + 1)
c
7
, c
9
u
4
(u
20
5u
19
+ ··· 48u + 16)(u
33
10u
32
+ ··· 23u + 4)
2
c
12
((u
2
+ u + 1)
2
)(u
20
+ 7u
19
+ ··· + 6u + 1)(u
66
+ 24u
65
+ ··· + 17u + 1)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
10
c
12
((y
2
+ y + 1)
2
)(y
20
+ 15y
19
+ ··· + 42y + 1)
· (y
66
+ 36y
65
+ ··· + 97y + 1)
c
2
, c
5
, c
6
c
11
((y
2
+ y + 1)
2
)(y
20
+ 7y
19
+ ··· + 6y + 1)(y
66
+ 24y
65
+ ··· + 17y + 1)
c
3
, c
8
y
4
(y
20
+ 5y
19
+ ··· + 48y + 16)(y
33
+ 10y
32
+ ··· 23y 4)
2
c
7
, c
9
y
4
(y
20
+ 13y
19
+ ··· + 2560y + 256)
· (y
33
+ 26y
32
+ ··· 335y 16)
2
26