12a
0182
(K12a
0182
)
A knot diagram
1
Linearized knot diagam
3 5 9 6 2 12 10 11 4 8 1 7
Solving Sequence
3,9
4
5,10
2 6
1,11
8 7 12
c
3
c
9
c
2
c
5
c
1
c
8
c
7
c
12
c
4
, c
6
, c
10
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.01638 × 10
144
u
70
+ 3.79783 × 10
144
u
69
+ ··· + 2.19432 × 10
148
d + 4.74337 × 10
147
,
1.52787 × 10
144
u
70
+ 2.07626 × 10
144
u
69
+ ··· + 3.13474 × 10
147
c 1.26268 × 10
147
,
2.08280 × 10
163
u
70
6.54445 × 10
163
u
69
+ ··· + 3.56067 × 10
166
b 1.75912 × 10
166
,
2.20933 × 10
163
u
70
4.97335 × 10
163
u
69
+ ··· + 1.01733 × 10
166
a 9.57968 × 10
164
,
u
71
2u
70
+ ··· + 1536u
2
512i
I
u
2
= hc
2
u + u
2
c + d c,
u
8
c + u
8
3u
6
c + u
7
u
5
c 2u
6
+ 4u
4
c 3u
5
+ 2u
3
c + u
4
+ c
3
u
2
c + 3u
3
2cu + 2u
2
c 1,
u
8
2u
6
+ 2u
4
+ b, u
6
+ u
4
+ a 1, u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1i
I
v
1
= ha, d v + 1, av + c v, b + v, v
2
v + 1i
I
v
2
= ha, d, c v, b v, v
2
+ v + 1i
I
v
3
= hc, d + 1, b, a 1, v 1i
I
v
4
= ha, da cb d b 1, dv + 1, cv ba bv + b a + 1, b
2
+ b + 1i
* 5 irreducible components of dim
C
= 0, with total 103 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.02 × 10
144
u
70
+ 3.80 × 10
144
u
69
+ · · · + 2.19 × 10
148
d + 4.74 × 10
147
, 1.53 ×
10
144
u
70
+2.08×10
144
u
69
+· · · + 3.13×10
147
c1.26×10
147
, 2.08×10
163
u
70
6.54 × 10
163
u
69
+ · · · + 3.56 × 10
166
b 1.76 × 10
166
, 2.21 × 10
163
u
70
4.97 ×
10
163
u
69
+ · · · + 1.02 × 10
166
a 9.58 × 10
164
, u
71
2u
70
+ · · · + 1536u
2
512i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
0.00217169u
70
+ 0.00488861u
69
+ ··· 2.25991u + 0.0941645
0.000584947u
70
+ 0.00183798u
69
+ ··· 0.979894u + 0.494041
a
10
=
u
u
3
+ u
a
2
=
0.000125704u
70
+ 0.00219339u
69
+ ··· 0.129419u + 0.703347
0.000888998u
70
0.00320644u
69
+ ··· + 2.30414u 0.769289
a
6
=
0.000125704u
70
+ 0.00219339u
69
+ ··· 0.129419u + 0.703347
0.00231995u
70
+ 0.00405624u
69
+ ··· 2.36850u 0.482448
a
1
=
0.00101470u
70
0.00101305u
69
+ ··· + 2.17472u 0.0659421
0.000888998u
70
0.00320644u
69
+ ··· + 2.30414u 0.769289
a
11
=
0.000487399u
70
0.000662337u
69
+ ··· + 1.64247u + 0.402802
0.0000463186u
70
0.000173075u
69
+ ··· + 0.648446u 0.216166
a
8
=
0.000515659u
70
+ 0.000632921u
69
+ ··· 0.744479u 0.458988
0.0000317918u
70
+ 0.0000611450u
69
+ ··· + 1.16201u + 0.147793
a
7
=
0.000533717u
70
+ 0.000489262u
69
+ ··· 0.994027u 0.618968
0.000164426u
70
0.000246208u
69
+ ··· + 0.921710u + 0.0798584
a
12
=
0.00194846u
70
0.00138153u
69
+ ··· + 2.53194u + 0.453579
0.000595399u
70
0.00245201u
69
+ ··· + 1.96648u 0.834037
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000644196u
70
+ 0.0111115u
69
+ ··· 0.863041u + 15.1191
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
71
+ 24u
70
+ ··· 40u 16
c
2
, c
5
u
71
+ 2u
70
+ ··· 5u
2
4
c
3
, c
9
u
71
2u
70
+ ··· + 1536u
2
512
c
6
, c
12
u
71
8u
70
+ ··· + 56u 16
c
7
, c
8
, c
10
u
71
+ 8u
70
+ ··· + 56u 16
c
11
u
71
+ 30u
70
+ ··· + 4640u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
71
+ 48y
70
+ ··· 6880y 256
c
2
, c
5
y
71
+ 24y
70
+ ··· 40y 16
c
3
, c
9
y
71
30y
70
+ ··· + 1572864y 262144
c
6
, c
12
y
71
30y
70
+ ··· + 4640y 256
c
7
, c
8
, c
10
y
71
70y
70
+ ··· 1504y 256
c
11
y
71
+ 30y
70
+ ··· + 5022208y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.372595 + 0.922213I
a = 0.706869 + 0.294839I
b = 0.705480 + 0.710846I
c = 0.470907 + 0.554383I
d = 1.70042 + 0.50968I
0.206074 + 1.106620I 1.82615 2.10157I
u = 0.372595 0.922213I
a = 0.706869 0.294839I
b = 0.705480 0.710846I
c = 0.470907 0.554383I
d = 1.70042 0.50968I
0.206074 1.106620I 1.82615 + 2.10157I
u = 0.661751 + 0.731261I
a = 1.05387 1.06299I
b = 0.033676 0.991675I
c = 0.475791 + 0.487011I
d = 1.339240 0.225092I
5.31233 1.23150I 6.16629 + 0.79467I
u = 0.661751 0.731261I
a = 1.05387 + 1.06299I
b = 0.033676 + 0.991675I
c = 0.475791 0.487011I
d = 1.339240 + 0.225092I
5.31233 + 1.23150I 6.16629 0.79467I
u = 0.216094 + 0.961248I
a = 0.490833 + 0.220678I
b = 0.626372 0.146182I
c = 0.190153 1.314880I
d = 0.304165 0.812210I
2.60149 2.06138I 6.60052 + 3.22142I
u = 0.216094 0.961248I
a = 0.490833 0.220678I
b = 0.626372 + 0.146182I
c = 0.190153 + 1.314880I
d = 0.304165 + 0.812210I
2.60149 + 2.06138I 6.60052 3.22142I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.510340 + 0.919175I
a = 0.97241 + 1.52837I
b = 0.167182 + 1.050320I
c = 0.387643 1.176070I
d = 0.698084 0.628537I
1.22762 + 4.53498I 0.48837 4.83158I
u = 0.510340 0.919175I
a = 0.97241 1.52837I
b = 0.167182 1.050320I
c = 0.387643 + 1.176070I
d = 0.698084 + 0.628537I
1.22762 4.53498I 0.48837 + 4.83158I
u = 0.843761 + 0.417994I
a = 3.24462 + 0.27087I
b = 0.648309 + 0.950753I
c = 0.537281 + 0.453998I
d = 0.703145 0.615016I
1.74336 + 3.95563I 0.57229 6.63484I
u = 0.843761 0.417994I
a = 3.24462 0.27087I
b = 0.648309 0.950753I
c = 0.537281 0.453998I
d = 0.703145 + 0.615016I
1.74336 3.95563I 0.57229 + 6.63484I
u = 0.980094 + 0.401535I
a = 0.780465 + 0.104472I
b = 0.675884 + 0.258339I
c = 0.548184 + 0.485014I
d = 0.641289 0.881527I
0.13020 4.00402I 4.41276 + 6.69495I
u = 0.980094 0.401535I
a = 0.780465 0.104472I
b = 0.675884 0.258339I
c = 0.548184 0.485014I
d = 0.641289 + 0.881527I
0.13020 + 4.00402I 4.41276 6.69495I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482781 + 0.984718I
a = 0.632388 + 0.401253I
b = 0.681961 + 0.973056I
c = 0.486783 + 0.532736I
d = 1.88522 + 0.25805I
0.99233 6.45679I 0.34368 + 6.97496I
u = 0.482781 0.984718I
a = 0.632388 0.401253I
b = 0.681961 0.973056I
c = 0.486783 0.532736I
d = 1.88522 0.25805I
0.99233 + 6.45679I 0.34368 6.97496I
u = 0.777198 + 0.427799I
a = 0.661548 + 0.487935I
b = 0.527615 + 1.024960I
c = 0.525019 + 0.439223I
d = 0.729049 0.488658I
1.94652 0.34051I 0.37051 3.03065I
u = 0.777198 0.427799I
a = 0.661548 0.487935I
b = 0.527615 1.024960I
c = 0.525019 0.439223I
d = 0.729049 + 0.488658I
1.94652 + 0.34051I 0.37051 + 3.03065I
u = 1.127060 + 0.152551I
a = 0.639024 + 0.570894I
b = 0.435782 + 1.114890I
c = 1.214770 + 0.100113I
d = 1.35450 + 0.44354I
4.50468 2.47836I 7.49354 + 3.38416I
u = 1.127060 0.152551I
a = 0.639024 0.570894I
b = 0.435782 1.114890I
c = 1.214770 0.100113I
d = 1.35450 0.44354I
4.50468 + 2.47836I 7.49354 3.38416I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.982347 + 0.611518I
a = 0.755795 0.846393I
b = 0.132131 1.098790I
c = 0.515465 + 0.490470I
d = 1.08458 0.93082I
4.29573 + 6.37313I 3.00781 7.19219I
u = 0.982347 0.611518I
a = 0.755795 + 0.846393I
b = 0.132131 + 1.098790I
c = 0.515465 0.490470I
d = 1.08458 + 0.93082I
4.29573 6.37313I 3.00781 + 7.19219I
u = 1.173990 + 0.222972I
a = 2.07252 0.44952I
b = 0.744384 + 0.914398I
c = 0.606381 0.672488I
d = 0.633879 + 0.879788I
5.09577 + 1.83902I 8.24819 + 0.I
u = 1.173990 0.222972I
a = 2.07252 + 0.44952I
b = 0.744384 0.914398I
c = 0.606381 + 0.672488I
d = 0.633879 0.879788I
5.09577 1.83902I 8.24819 + 0.I
u = 1.203430 + 0.094057I
a = 1.52309 0.96637I
b = 0.774513 + 0.827694I
c = 0.596615 0.625599I
d = 0.431350 + 1.041490I
5.36659 + 3.89584I 8.41567 5.55146I
u = 1.203430 0.094057I
a = 1.52309 + 0.96637I
b = 0.774513 0.827694I
c = 0.596615 + 0.625599I
d = 0.431350 1.041490I
5.36659 3.89584I 8.41567 + 5.55146I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.117530 + 0.478181I
a = 0.690211 0.765567I
b = 0.209298 1.133130I
c = 1.116800 + 0.271956I
d = 1.28841 + 1.30589I
3.15531 + 5.12152I 0
u = 1.117530 0.478181I
a = 0.690211 + 0.765567I
b = 0.209298 + 1.133130I
c = 1.116800 0.271956I
d = 1.28841 1.30589I
3.15531 5.12152I 0
u = 1.137650 + 0.460214I
a = 0.609632 0.520416I
b = 0.523715 1.123490I
c = 1.116170 + 0.256986I
d = 1.24509 + 1.25727I
3.19656 2.55854I 0
u = 1.137650 0.460214I
a = 0.609632 + 0.520416I
b = 0.523715 + 1.123490I
c = 1.116170 0.256986I
d = 1.24509 1.25727I
3.19656 + 2.55854I 0
u = 0.725491 + 0.260568I
a = 0.74999 2.93714I
b = 0.621787 + 0.746410I
c = 0.573783 + 0.383951I
d = 0.438809 0.376035I
1.09934 + 1.05821I 3.09814 + 1.72718I
u = 0.725491 0.260568I
a = 0.74999 + 2.93714I
b = 0.621787 0.746410I
c = 0.573783 0.383951I
d = 0.438809 + 0.376035I
1.09934 1.05821I 3.09814 1.72718I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.247645 + 1.226350I
a = 0.653789 + 0.300056I
b = 0.795711 + 0.784067I
c = 0.133830 1.140380I
d = 0.422479 1.218340I
6.94619 1.12108I 0
u = 0.247645 1.226350I
a = 0.653789 0.300056I
b = 0.795711 0.784067I
c = 0.133830 + 1.140380I
d = 0.422479 + 1.218340I
6.94619 + 1.12108I 0
u = 0.464983 + 0.581438I
a = 1.72522 0.64973I
b = 0.139048 0.768176I
c = 0.71852 1.33569I
d = 0.442687 0.257326I
1.011140 0.938516I 3.66296 0.79830I
u = 0.464983 0.581438I
a = 1.72522 + 0.64973I
b = 0.139048 + 0.768176I
c = 0.71852 + 1.33569I
d = 0.442687 + 0.257326I
1.011140 + 0.938516I 3.66296 + 0.79830I
u = 0.368570 + 1.210560I
a = 0.618935 + 0.372180I
b = 0.745652 + 0.954700I
c = 0.194177 1.117100I
d = 0.623618 1.150760I
6.42018 4.68044I 0
u = 0.368570 1.210560I
a = 0.618935 0.372180I
b = 0.745652 0.954700I
c = 0.194177 + 1.117100I
d = 0.623618 + 1.150760I
6.42018 + 4.68044I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.248660 + 0.306382I
a = 0.734113 + 0.059783I
b = 0.802776 + 0.158635I
c = 1.116690 + 0.156605I
d = 0.994223 + 0.843737I
7.51654 1.91781I 0
u = 1.248660 0.306382I
a = 0.734113 0.059783I
b = 0.802776 0.158635I
c = 1.116690 0.156605I
d = 0.994223 0.843737I
7.51654 + 1.91781I 0
u = 0.504947 + 1.215580I
a = 0.662564 0.264148I
b = 0.825179 0.702952I
c = 0.245007 1.071700I
d = 0.859773 1.094450I
5.42990 4.32973I 0
u = 0.504947 1.215580I
a = 0.662564 + 0.264148I
b = 0.825179 + 0.702952I
c = 0.245007 + 1.071700I
d = 0.859773 + 1.094450I
5.42990 + 4.32973I 0
u = 1.152900 + 0.667545I
a = 0.653927 + 0.849988I
b = 0.143613 + 1.176100I
c = 1.028980 + 0.314229I
d = 1.17468 + 1.72508I
0.80414 10.42400I 0
u = 1.152900 0.667545I
a = 0.653927 0.849988I
b = 0.143613 1.176100I
c = 1.028980 0.314229I
d = 1.17468 1.72508I
0.80414 + 10.42400I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.185800 + 0.609579I
a = 0.604647 0.948689I
b = 0.833000 + 0.664986I
c = 0.515530 + 0.509861I
d = 1.03285 1.38981I
2.33908 6.73341I 0
u = 1.185800 0.609579I
a = 0.604647 + 0.948689I
b = 0.833000 0.664986I
c = 0.515530 0.509861I
d = 1.03285 + 1.38981I
2.33908 + 6.73341I 0
u = 0.593784 + 1.208600I
a = 0.602225 0.393473I
b = 0.733361 1.011480I
c = 0.274626 1.042820I
d = 1.00911 1.02929I
4.48821 + 10.17210I 0
u = 0.593784 1.208600I
a = 0.602225 + 0.393473I
b = 0.733361 + 1.011480I
c = 0.274626 + 1.042820I
d = 1.00911 + 1.02929I
4.48821 10.17210I 0
u = 1.233000 + 0.545251I
a = 0.716779 0.101507I
b = 0.834377 0.273084I
c = 1.052540 + 0.252051I
d = 1.00331 + 1.44383I
5.82408 + 7.48275I 0
u = 1.233000 0.545251I
a = 0.716779 + 0.101507I
b = 0.834377 + 0.273084I
c = 1.052540 0.252051I
d = 1.00331 1.44383I
5.82408 7.48275I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.176438 + 0.617781I
a = 1.24181 5.67569I
b = 0.472468 0.965679I
c = 0.38103 1.75179I
d = 0.176185 0.407221I
0.42738 1.60074I 0.77404 + 2.18898I
u = 0.176438 0.617781I
a = 1.24181 + 5.67569I
b = 0.472468 + 0.965679I
c = 0.38103 + 1.75179I
d = 0.176185 + 0.407221I
0.42738 + 1.60074I 0.77404 2.18898I
u = 1.181300 + 0.680585I
a = 1.94797 + 0.51901I
b = 0.722487 + 1.031630I
c = 0.510240 + 0.507622I
d = 1.20020 1.39980I
1.22414 + 12.55690I 0
u = 1.181300 0.680585I
a = 1.94797 0.51901I
b = 0.722487 1.031630I
c = 0.510240 0.507622I
d = 1.20020 + 1.39980I
1.22414 12.55690I 0
u = 0.010891 + 0.626888I
a = 0.717451 0.379980I
b = 0.596253 0.833536I
c = 0.145864 + 0.996178I
d = 0.36117 + 2.00147I
0.65592 + 2.35939I 1.51759 4.85897I
u = 0.010891 0.626888I
a = 0.717451 + 0.379980I
b = 0.596253 + 0.833536I
c = 0.145864 0.996178I
d = 0.36117 2.00147I
0.65592 2.35939I 1.51759 + 4.85897I
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617428 + 0.085193I
a = 0.771703 + 0.515946I
b = 0.399151 + 0.927946I
c = 0.667996 + 0.208298I
d = 0.215095 0.146010I
0.93328 2.67780I 3.99337 + 7.95500I
u = 0.617428 0.085193I
a = 0.771703 0.515946I
b = 0.399151 0.927946I
c = 0.667996 0.208298I
d = 0.215095 + 0.146010I
0.93328 + 2.67780I 3.99337 7.95500I
u = 0.591164
a = 0.929806
b = 0.315087
c = 1.20948
d = 0.0779789
1.02886 10.5160
u = 0.282782 + 0.492299I
a = 1.070690 0.124673I
b = 0.198227 + 0.270585I
c = 0.298696 + 0.445240I
d = 0.632940 + 0.412834I
1.67984 + 0.60130I 3.90300 0.33160I
u = 0.282782 0.492299I
a = 1.070690 + 0.124673I
b = 0.198227 0.270585I
c = 0.298696 0.445240I
d = 0.632940 0.412834I
1.67984 0.60130I 3.90300 + 0.33160I
u = 1.33133 + 0.61244I
a = 0.691353 0.789833I
b = 0.877454 + 0.689350I
c = 1.004370 + 0.240216I
d = 0.77088 + 1.60236I
10.54930 5.35435I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.33133 0.61244I
a = 0.691353 + 0.789833I
b = 0.877454 0.689350I
c = 1.004370 0.240216I
d = 0.77088 1.60236I
10.54930 + 5.35435I 0
u = 1.29995 + 0.68416I
a = 1.77475 + 0.42337I
b = 0.751329 + 1.038160I
c = 0.990397 + 0.266490I
d = 0.85024 + 1.76626I
9.4739 + 11.4004I 0
u = 1.29995 0.68416I
a = 1.77475 0.42337I
b = 0.751329 1.038160I
c = 0.990397 0.266490I
d = 0.85024 1.76626I
9.4739 11.4004I 0
u = 1.27239 + 0.75883I
a = 0.528127 + 0.758818I
b = 0.887462 0.636245I
c = 0.972392 + 0.290048I
d = 0.92205 + 1.92929I
7.95427 + 11.37060I 0
u = 1.27239 0.75883I
a = 0.528127 0.758818I
b = 0.887462 + 0.636245I
c = 0.972392 0.290048I
d = 0.92205 1.92929I
7.95427 11.37060I 0
u = 1.24401 + 0.80606I
a = 1.73933 0.62055I
b = 0.732124 1.065030I
c = 0.961782 + 0.307183I
d = 0.99186 + 2.02574I
6.6365 17.3722I 0
15
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.24401 0.80606I
a = 1.73933 + 0.62055I
b = 0.732124 + 1.065030I
c = 0.961782 0.307183I
d = 0.99186 2.02574I
6.6365 + 17.3722I 0
u = 1.51788 + 0.06429I
a = 1.289590 0.499691I
b = 0.858480 + 0.864860I
c = 1.033780 + 0.023696I
d = 0.276083 + 0.176660I
13.78050 0.08878I 0
u = 1.51788 0.06429I
a = 1.289590 + 0.499691I
b = 0.858480 0.864860I
c = 1.033780 0.023696I
d = 0.276083 0.176660I
13.78050 + 0.08878I 0
u = 1.51414 + 0.16464I
a = 1.47755 0.28880I
b = 0.837181 + 0.923149I
c = 1.029750 + 0.060361I
d = 0.287259 + 0.451271I
13.6007 + 6.3599I 0
u = 1.51414 0.16464I
a = 1.47755 + 0.28880I
b = 0.837181 0.923149I
c = 1.029750 0.060361I
d = 0.287259 0.451271I
13.6007 6.3599I 0
16
II. I
u
2
= hc
2
u + u
2
c + d c, u
8
c + u
8
+ · · · c 1, u
8
2u
6
+ 2u
4
+
b, u
6
+ u
4
+ a 1, u
9
+ u
8
+ · · · u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
5
=
u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
a
10
=
u
u
3
+ u
a
2
=
u
3
u
3
+ u
a
6
=
u
3
u
5
+ u
3
u
a
1
=
u
u
3
+ u
a
11
=
c
c
2
u u
2
c + c
a
8
=
c
2
u
u
3
c
2
c
2
u + c
a
7
=
c
2
u u
2
c
u
3
c
2
+ u
4
c c
2
u u
2
c + c
a
12
=
u
3
c
2
+ c
u
5
c
2
+ u
3
c
2
c
2
u u
2
c + c
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
8u
5
4u
4
+ 8u
3
+ 4u
2
+ 4u + 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
3
c
2
, c
5
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
3
c
3
, c
9
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
3
c
6
, c
7
, c
8
c
10
, c
12
u
27
9u
25
+ ··· u + 1
c
11
u
27
+ 18u
26
+ ··· + 5u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
3
c
2
, c
5
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
3
c
3
, c
9
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
3
c
6
, c
7
, c
8
c
10
, c
12
y
27
18y
26
+ ··· + 5y 1
c
11
y
27
18y
26
+ ··· 15y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.772920 + 0.510351I
a = 0.917974 + 0.753965I
b = 0.140343 + 0.966856I
c = 0.719765 0.954592I
d = 0.673261 + 0.061997I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.772920 + 0.510351I
a = 0.917974 + 0.753965I
b = 0.140343 + 0.966856I
c = 0.508051 + 0.453456I
d = 0.889180 0.483066I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.772920 + 0.510351I
a = 0.917974 + 0.753965I
b = 0.140343 + 0.966856I
c = 1.227820 + 0.501136I
d = 2.01788 + 1.61089I
1.78344 2.09337I 0.51499 + 4.16283I
u = 0.772920 0.510351I
a = 0.917974 0.753965I
b = 0.140343 0.966856I
c = 0.719765 + 0.954592I
d = 0.673261 0.061997I
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.772920 0.510351I
a = 0.917974 0.753965I
b = 0.140343 0.966856I
c = 0.508051 0.453456I
d = 0.889180 + 0.483066I
1.78344 + 2.09337I 0.51499 4.16283I
u = 0.772920 0.510351I
a = 0.917974 0.753965I
b = 0.140343 0.966856I
c = 1.227820 0.501136I
d = 2.01788 1.61089I
1.78344 + 2.09337I 0.51499 4.16283I
20
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.825933
a = 0.852096
b = 0.512358
c = 0.753259 + 0.486083I
d = 0.034073 0.450330I
1.19845 8.65230
u = 0.825933
a = 0.852096
b = 0.512358
c = 0.753259 0.486083I
d = 0.034073 + 0.450330I
1.19845 8.65230
u = 0.825933
a = 0.852096
b = 0.512358
c = 1.50652
d = 2.35336
1.19845 8.65230
u = 1.173910 + 0.391555I
a = 0.92292 + 1.10816I
b = 0.796005 0.733148I
c = 0.585219 0.735474I
d = 0.911760 + 0.715540I
4.37135 + 1.33617I 7.28409 0.70175I
u = 1.173910 + 0.391555I
a = 0.92292 + 1.10816I
b = 0.796005 0.733148I
c = 1.125820 + 0.215546I
d = 1.17222 + 1.07817I
4.37135 + 1.33617I 7.28409 0.70175I
u = 1.173910 + 0.391555I
a = 0.92292 + 1.10816I
b = 0.796005 0.733148I
c = 0.540604 + 0.519928I
d = 0.550840 1.282330I
4.37135 + 1.33617I 7.28409 0.70175I
21
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.173910 0.391555I
a = 0.92292 1.10816I
b = 0.796005 + 0.733148I
c = 0.585219 + 0.735474I
d = 0.911760 0.715540I
4.37135 1.33617I 7.28409 + 0.70175I
u = 1.173910 0.391555I
a = 0.92292 1.10816I
b = 0.796005 + 0.733148I
c = 1.125820 0.215546I
d = 1.17222 1.07817I
4.37135 1.33617I 7.28409 + 0.70175I
u = 1.173910 0.391555I
a = 0.92292 1.10816I
b = 0.796005 + 0.733148I
c = 0.540604 0.519928I
d = 0.550840 + 1.282330I
4.37135 1.33617I 7.28409 + 0.70175I
u = 0.141484 + 0.739668I
a = 0.688816 0.385922I
b = 0.628449 0.875112I
c = 0.588998 + 0.928874I
d = 1.44140 + 2.07815I
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.141484 + 0.739668I
a = 0.688816 0.385922I
b = 0.628449 0.875112I
c = 0.370252 + 0.657000I
d = 1.10445 + 1.07485I
0.61694 + 2.45442I 2.32792 2.91298I
u = 0.141484 + 0.739668I
a = 0.688816 0.385922I
b = 0.628449 0.875112I
c = 0.21875 1.58587I
d = 0.162007 0.544526I
0.61694 + 2.45442I 2.32792 2.91298I
22
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.141484 0.739668I
a = 0.688816 + 0.385922I
b = 0.628449 + 0.875112I
c = 0.588998 0.928874I
d = 1.44140 2.07815I
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.141484 0.739668I
a = 0.688816 + 0.385922I
b = 0.628449 + 0.875112I
c = 0.370252 0.657000I
d = 1.10445 1.07485I
0.61694 2.45442I 2.32792 + 2.91298I
u = 0.141484 0.739668I
a = 0.688816 + 0.385922I
b = 0.628449 + 0.875112I
c = 0.21875 + 1.58587I
d = 0.162007 + 0.544526I
0.61694 2.45442I 2.32792 + 2.91298I
u = 1.172470 + 0.500383I
a = 2.10992 0.19571I
b = 0.728966 0.986295I
c = 0.561253 0.771469I
d = 1.079830 + 0.592867I
3.59813 7.08493I 5.57680 + 5.91335I
u = 1.172470 + 0.500383I
a = 2.10992 0.19571I
b = 0.728966 0.986295I
c = 1.088090 + 0.258687I
d = 1.15257 + 1.34568I
3.59813 7.08493I 5.57680 + 5.91335I
u = 1.172470 + 0.500383I
a = 2.10992 0.19571I
b = 0.728966 0.986295I
c = 0.526836 + 0.512782I
d = 0.78942 1.32272I
3.59813 7.08493I 5.57680 + 5.91335I
23
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.172470 0.500383I
a = 2.10992 + 0.19571I
b = 0.728966 + 0.986295I
c = 0.561253 + 0.771469I
d = 1.079830 0.592867I
3.59813 + 7.08493I 5.57680 5.91335I
u = 1.172470 0.500383I
a = 2.10992 + 0.19571I
b = 0.728966 + 0.986295I
c = 1.088090 0.258687I
d = 1.15257 1.34568I
3.59813 + 7.08493I 5.57680 5.91335I
u = 1.172470 0.500383I
a = 2.10992 + 0.19571I
b = 0.728966 + 0.986295I
c = 0.526836 0.512782I
d = 0.78942 + 1.32272I
3.59813 + 7.08493I 5.57680 5.91335I
24
III. I
v
1
= ha, d v + 1, av + c v, b + v, v
2
v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
v
a
10
=
v
0
a
2
=
1
v 1
a
6
=
v
v + 1
a
1
=
v
v 1
a
11
=
v
v 1
a
8
=
0
v + 1
a
7
=
v
v + 1
a
12
=
v
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 11
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
3
, c
6
, c
9
c
11
, c
12
u
2
c
7
, c
8
(u + 1)
2
c
10
(u 1)
2
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
y
2
+ y + 1
c
3
, c
6
, c
9
c
11
, c
12
y
2
c
7
, c
8
, c
10
(y 1)
2
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0.500000 + 0.866025I
d = 0.500000 + 0.866025I
1.64493 + 2.02988I 9.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0.500000 0.866025I
d = 0.500000 0.866025I
1.64493 2.02988I 9.00000 + 3.46410I
28
IV. I
v
2
= ha, d, c v, b v, v
2
+ v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
v
a
10
=
v
0
a
2
=
1
v 1
a
6
=
v
v + 1
a
1
=
v
v 1
a
11
=
v
0
a
8
=
v
0
a
7
=
v
0
a
12
=
0
v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 1
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
3
, c
7
, c
8
c
9
, c
10
u
2
c
6
, c
11
(u 1)
2
c
12
(u + 1)
2
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
y
2
+ y + 1
c
3
, c
7
, c
8
c
9
, c
10
y
2
c
6
, c
11
, c
12
(y 1)
2
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0.500000 + 0.866025I
d = 0
1.64493 2.02988I 3.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0.500000 0.866025I
d = 0
1.64493 + 2.02988I 3.00000 3.46410I
32
V. I
v
3
= hc, d + 1, b, a 1, v 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
5
=
1
0
a
10
=
1
0
a
2
=
1
0
a
6
=
1
0
a
1
=
1
0
a
11
=
0
1
a
8
=
1
1
a
7
=
0
1
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
u
c
6
, c
7
, c
8
u + 1
c
10
, c
11
, c
12
u 1
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
y
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y 1
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
0 0
36
VI. I
v
4
= ha, da cb d b 1, dv + 1, cv ba bv + b a + 1, b
2
+ b + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
5
=
0
b
a
10
=
v
0
a
2
=
1
b 1
a
6
=
b
b + 1
a
1
=
b
b 1
a
11
=
c
cb b 1
a
8
=
c + v
cb + b + 1
a
7
=
c
cb + b + 1
a
12
=
c b
cb 2b 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = c
2
b + c
2
v
2
+ 2c + 3b + 4
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
37
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
2.02988I 0.00174 + 3.27049I
38
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u(u
2
u + 1)
2
· (u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
3
· (u
71
+ 24u
70
+ ··· 40u 16)
c
2
u(u
2
+ u + 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
3
· (u
71
+ 2u
70
+ ··· 5u
2
4)
c
3
, c
9
u
5
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
3
· (u
71
2u
70
+ ··· + 1536u
2
512)
c
5
u(u
2
u + 1)
2
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
3
· (u
71
+ 2u
70
+ ··· 5u
2
4)
c
6
u
2
(u 1)
2
(u + 1)(u
27
9u
25
+ ··· u + 1)(u
71
8u
70
+ ··· + 56u 16)
c
7
, c
8
u
2
(u + 1)
3
(u
27
9u
25
+ ··· u + 1)(u
71
+ 8u
70
+ ··· + 56u 16)
c
10
u
2
(u 1)
3
(u
27
9u
25
+ ··· u + 1)(u
71
+ 8u
70
+ ··· + 56u 16)
c
11
u
2
(u 1)
3
(u
27
+ 18u
26
+ ··· + 5u + 1)
· (u
71
+ 30u
70
+ ··· + 4640u + 256)
c
12
u
2
(u 1)(u + 1)
2
(u
27
9u
25
+ ··· u + 1)(u
71
8u
70
+ ··· + 56u 16)
39
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y(y
2
+ y + 1)
2
· (y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
3
· (y
71
+ 48y
70
+ ··· 6880y 256)
c
2
, c
5
y(y
2
+ y + 1)
2
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
3
· (y
71
+ 24y
70
+ ··· 40y 16)
c
3
, c
9
y
5
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
3
· (y
71
30y
70
+ ··· + 1572864y 262144)
c
6
, c
12
y
2
(y 1)
3
(y
27
18y
26
+ ··· + 5y 1)
· (y
71
30y
70
+ ··· + 4640y 256)
c
7
, c
8
, c
10
y
2
(y 1)
3
(y
27
18y
26
+ ··· + 5y 1)
· (y
71
70y
70
+ ··· 1504y 256)
c
11
y
2
(y 1)
3
(y
27
18y
26
+ ··· 15y 1)
· (y
71
+ 30y
70
+ ··· + 5022208y 65536)
40