12a
0187
(K12a
0187
)
A knot diagram
1
Linearized knot diagam
3 5 9 7 2 10 1 12 11 6 4 8
Solving Sequence
2,6
5 3
1,11
10 7 8 4 9 12
c
5
c
2
c
1
c
10
c
6
c
7
c
4
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.70828 × 10
211
u
102
4.30580 × 10
211
u
101
+ ··· + 2.02673 × 10
212
b 2.48946 × 10
212
,
4.27526 × 10
212
u
102
+ 1.62447 × 10
213
u
101
+ ··· + 1.82405 × 10
213
a 3.78144 × 10
212
,
u
103
+ 2u
102
+ ··· 50u 9i
I
u
2
= hb + 1, 3a 3u + 4, u
2
u + 1i
* 2 irreducible components of dim
C
= 0, with total 105 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.71 × 10
211
u
102
4.31 × 10
211
u
101
+ · · · + 2.03 × 10
212
b 2.49 ×
10
212
, 4.28 × 10
212
u
102
+ 1.62 × 10
213
u
101
+ · · · + 1.82 × 10
213
a 3.78 ×
10
212
, u
103
+ 2u
102
+ · · · 50u 9i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
11
=
0.234382u
102
0.890582u
101
+ ··· + 27.2644u + 0.207310
0.232309u
102
+ 0.212451u
101
+ ··· + 5.06954u + 1.22831
a
10
=
0.466692u
102
1.10303u
101
+ ··· + 22.1949u 1.02100
0.232309u
102
+ 0.212451u
101
+ ··· + 5.06954u + 1.22831
a
7
=
0.267327u
102
0.877958u
101
+ ··· + 39.1849u + 7.35328
0.374555u
102
+ 0.677940u
101
+ ··· 9.16517u 0.221474
a
8
=
0.237025u
102
+ 0.234288u
101
+ ··· + 15.8996u + 3.19729
0.115727u
102
+ 0.335221u
101
+ ··· 7.46104u 0.621629
a
4
=
0.150719u
102
0.268946u
101
+ ··· + 12.7692u + 8.10850
0.538052u
102
+ 0.982186u
101
+ ··· 20.4638u 3.33616
a
9
=
0.243327u
102
0.831816u
101
+ ··· + 38.7154u + 9.33905
0.344667u
102
+ 0.390802u
101
+ ··· + 1.82827u + 2.29816
a
12
=
0.238737u
102
1.06579u
101
+ ··· + 25.5129u 2.83305
0.272415u
102
+ 0.179279u
101
+ ··· + 8.93923u + 1.31134
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.09329u
102
+ 1.70936u
101
+ ··· 12.5511u 1.22773
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
103
+ 44u
102
+ ··· + 1510u 81
c
2
, c
5
u
103
+ 2u
102
+ ··· 50u 9
c
3
9(9u
103
132u
102
+ ··· + 8034u 2563)
c
4
9(9u
103
+ 87u
102
+ ··· 19058u 1196)
c
6
, c
10
u
103
3u
102
+ ··· + 3u 1
c
7
, c
8
, c
12
u
103
+ 3u
102
+ ··· 3u 1
c
9
u
103
+ 37u
102
+ ··· + 13u 1
c
11
u
103
5u
102
+ ··· + 648u 108
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
103
+ 32y
102
+ ··· + 1346818y 6561
c
2
, c
5
y
103
+ 44y
102
+ ··· + 1510y 81
c
3
81(81y
103
+ 11916y
102
+ ··· + 1.84130 × 10
8
y 6568969)
c
4
81(81y
103
+ 11295y
102
+ ··· + 1.43926 × 10
8
y 1430416)
c
6
, c
10
y
103
+ 37y
102
+ ··· + 13y 1
c
7
, c
8
, c
12
y
103
+ 97y
102
+ ··· + 13y 1
c
9
y
103
+ 45y
102
+ ··· 379y 1
c
11
y
103
+ 15y
102
+ ··· 153576y 11664
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.871098 + 0.491257I
a = 1.30022 0.63958I
b = 0.694924 1.068860I
2.78356 + 8.56668I 0
u = 0.871098 0.491257I
a = 1.30022 + 0.63958I
b = 0.694924 + 1.068860I
2.78356 8.56668I 0
u = 0.481345 + 0.878527I
a = 8.55020 1.64997I
b = 0.531227 + 0.886277I
5.02226 + 0.00767I 0
u = 0.481345 0.878527I
a = 8.55020 + 1.64997I
b = 0.531227 0.886277I
5.02226 0.00767I 0
u = 0.915500 + 0.391024I
a = 1.287160 + 0.339540I
b = 0.626849 + 0.812428I
3.16321 0.76735I 0
u = 0.915500 0.391024I
a = 1.287160 0.339540I
b = 0.626849 0.812428I
3.16321 + 0.76735I 0
u = 0.111367 + 0.987800I
a = 0.314049 0.426026I
b = 0.557089 + 0.278730I
1.61354 + 2.06379I 0
u = 0.111367 0.987800I
a = 0.314049 + 0.426026I
b = 0.557089 0.278730I
1.61354 2.06379I 0
u = 0.590356 + 0.821048I
a = 1.35154 2.18344I
b = 0.555019 0.805027I
0.597431 + 0.086793I 0
u = 0.590356 0.821048I
a = 1.35154 + 2.18344I
b = 0.555019 + 0.805027I
0.597431 0.086793I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.453314 + 0.866625I
a = 1.014640 + 0.981164I
b = 1.155570 0.097756I
1.47294 1.87526I 0
u = 0.453314 0.866625I
a = 1.014640 0.981164I
b = 1.155570 + 0.097756I
1.47294 + 1.87526I 0
u = 0.569820 + 0.848750I
a = 0.214973 + 0.102311I
b = 0.197507 + 0.130121I
0.45171 + 2.26396I 0
u = 0.569820 0.848750I
a = 0.214973 0.102311I
b = 0.197507 0.130121I
0.45171 2.26396I 0
u = 0.359432 + 0.905150I
a = 0.75669 + 1.89295I
b = 0.352860 0.854813I
0.888701 + 0.166715I 0
u = 0.359432 0.905150I
a = 0.75669 1.89295I
b = 0.352860 + 0.854813I
0.888701 0.166715I 0
u = 0.921960 + 0.458261I
a = 1.47257 0.41314I
b = 0.852313 0.561544I
1.90097 + 6.60861I 0
u = 0.921960 0.458261I
a = 1.47257 + 0.41314I
b = 0.852313 + 0.561544I
1.90097 6.60861I 0
u = 0.793954 + 0.554908I
a = 1.60966 + 0.27728I
b = 0.864736 + 0.590779I
4.25085 + 2.77419I 0
u = 0.793954 0.554908I
a = 1.60966 0.27728I
b = 0.864736 0.590779I
4.25085 2.77419I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.495018 + 0.831311I
a = 2.68722 + 5.91244I
b = 0.462208 0.898317I
4.88019 + 3.96585I 0
u = 0.495018 0.831311I
a = 2.68722 5.91244I
b = 0.462208 + 0.898317I
4.88019 3.96585I 0
u = 0.293989 + 0.900677I
a = 0.340712 1.361400I
b = 0.846553 0.778278I
6.38836 + 1.72239I 0
u = 0.293989 0.900677I
a = 0.340712 + 1.361400I
b = 0.846553 + 0.778278I
6.38836 1.72239I 0
u = 0.277077 + 1.032330I
a = 1.19938 1.04039I
b = 0.201061 + 1.183910I
5.76408 0.70494I 0
u = 0.277077 1.032330I
a = 1.19938 + 1.04039I
b = 0.201061 1.183910I
5.76408 + 0.70494I 0
u = 0.986142 + 0.425293I
a = 1.39902 + 0.48943I
b = 0.684015 + 1.076400I
3.46407 + 12.32820I 0
u = 0.986142 0.425293I
a = 1.39902 0.48943I
b = 0.684015 1.076400I
3.46407 12.32820I 0
u = 0.610418 + 0.687254I
a = 1.81549 + 0.03994I
b = 0.914625 0.659767I
3.31217 2.28195I 0
u = 0.610418 0.687254I
a = 1.81549 0.03994I
b = 0.914625 + 0.659767I
3.31217 + 2.28195I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.429365 + 0.993415I
a = 2.23623 0.66942I
b = 0.793940 + 1.063610I
7.22938 4.55942I 0
u = 0.429365 0.993415I
a = 2.23623 + 0.66942I
b = 0.793940 1.063610I
7.22938 + 4.55942I 0
u = 0.575604 + 0.917006I
a = 3.51154 0.47561I
b = 0.558359 + 0.901843I
0.28262 + 4.54488I 0
u = 0.575604 0.917006I
a = 3.51154 + 0.47561I
b = 0.558359 0.901843I
0.28262 4.54488I 0
u = 0.145915 + 0.904009I
a = 0.387490 0.748969I
b = 0.477410 + 1.112370I
2.20452 + 2.91537I 0
u = 0.145915 0.904009I
a = 0.387490 + 0.748969I
b = 0.477410 1.112370I
2.20452 2.91537I 0
u = 0.928998 + 0.565337I
a = 1.39788 0.40407I
b = 0.624297 0.867993I
2.99328 + 4.14157I 0
u = 0.928998 0.565337I
a = 1.39788 + 0.40407I
b = 0.624297 + 0.867993I
2.99328 4.14157I 0
u = 0.439732 + 1.011410I
a = 0.0132110 0.0165854I
b = 0.604253 1.208440I
7.11927 1.53062I 0
u = 0.439732 1.011410I
a = 0.0132110 + 0.0165854I
b = 0.604253 + 1.208440I
7.11927 + 1.53062I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.572592 + 0.946939I
a = 0.565216 + 1.182330I
b = 1.032180 + 0.543713I
2.52591 2.40214I 0
u = 0.572592 0.946939I
a = 0.565216 1.182330I
b = 1.032180 0.543713I
2.52591 + 2.40214I 0
u = 1.118500 + 0.085441I
a = 1.174310 + 0.253168I
b = 0.642035 + 0.840314I
0.12842 + 2.50437I 0
u = 1.118500 0.085441I
a = 1.174310 0.253168I
b = 0.642035 0.840314I
0.12842 2.50437I 0
u = 0.682041 + 0.552389I
a = 1.12174 + 0.93636I
b = 0.720355 + 1.047180I
2.07846 + 3.71952I 0
u = 0.682041 0.552389I
a = 1.12174 0.93636I
b = 0.720355 1.047180I
2.07846 3.71952I 0
u = 0.383137 + 1.058970I
a = 0.133273 0.806743I
b = 0.182506 + 0.719748I
1.47585 + 2.37544I 0
u = 0.383137 1.058970I
a = 0.133273 + 0.806743I
b = 0.182506 0.719748I
1.47585 2.37544I 0
u = 0.817133 + 0.283548I
a = 0.370079 0.207901I
b = 0.057314 1.154100I
8.29042 + 5.22148I 0
u = 0.817133 0.283548I
a = 0.370079 + 0.207901I
b = 0.057314 + 1.154100I
8.29042 5.22148I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.550261 + 1.022500I
a = 1.149200 0.427257I
b = 0.982102 + 0.426405I
4.54476 7.45140I 0
u = 0.550261 1.022500I
a = 1.149200 + 0.427257I
b = 0.982102 0.426405I
4.54476 + 7.45140I 0
u = 0.497337 + 1.051020I
a = 1.096070 + 0.639427I
b = 0.103323 1.286110I
4.45937 5.98055I 0
u = 0.497337 1.051020I
a = 1.096070 0.639427I
b = 0.103323 + 1.286110I
4.45937 + 5.98055I 0
u = 0.655056 + 0.510094I
a = 0.360724 0.250421I
b = 0.384916 0.056331I
3.00355 + 1.46606I 0
u = 0.655056 0.510094I
a = 0.360724 + 0.250421I
b = 0.384916 + 0.056331I
3.00355 1.46606I 0
u = 0.632107 + 0.988265I
a = 0.418130 0.086811I
b = 0.264416 0.326151I
4.33420 + 3.53568I 0
u = 0.632107 0.988265I
a = 0.418130 + 0.086811I
b = 0.264416 + 0.326151I
4.33420 3.53568I 0
u = 0.602669 + 1.030500I
a = 2.12057 + 0.66881I
b = 0.727061 1.134850I
0.65689 8.70948I 0
u = 0.602669 1.030500I
a = 2.12057 0.66881I
b = 0.727061 + 1.134850I
0.65689 + 8.70948I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.031145 + 1.207760I
a = 0.462840 + 0.926806I
b = 0.559631 1.051590I
3.52032 + 6.53771I 0
u = 0.031145 1.207760I
a = 0.462840 0.926806I
b = 0.559631 + 1.051590I
3.52032 6.53771I 0
u = 0.648711 + 1.052320I
a = 0.522042 1.067520I
b = 0.946139 0.528511I
2.75148 8.20254I 0
u = 0.648711 1.052320I
a = 0.522042 + 1.067520I
b = 0.946139 + 0.528511I
2.75148 + 8.20254I 0
u = 0.384723 + 1.181550I
a = 0.535525 + 0.949353I
b = 0.040165 0.822281I
7.32781 + 3.96721I 0
u = 0.384723 1.181550I
a = 0.535525 0.949353I
b = 0.040165 + 0.822281I
7.32781 3.96721I 0
u = 0.580143 + 0.480187I
a = 0.84467 1.20839I
b = 0.809110 0.334106I
3.00791 + 2.92106I 6.00000 4.14158I
u = 0.580143 0.480187I
a = 0.84467 + 1.20839I
b = 0.809110 + 0.334106I
3.00791 2.92106I 6.00000 + 4.14158I
u = 0.216993 + 1.245200I
a = 0.894698 + 1.036440I
b = 0.111870 1.129660I
13.24120 + 1.89785I 0
u = 0.216993 1.245200I
a = 0.894698 1.036440I
b = 0.111870 + 1.129660I
13.24120 1.89785I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.742441 + 1.029240I
a = 0.484188 + 0.759047I
b = 0.579742 + 0.726146I
1.60775 + 1.95719I 0
u = 0.742441 1.029240I
a = 0.484188 0.759047I
b = 0.579742 0.726146I
1.60775 1.95719I 0
u = 0.000731 + 1.276870I
a = 0.546798 + 0.248636I
b = 0.688415 0.412207I
8.39396 + 3.98589I 0
u = 0.000731 1.276870I
a = 0.546798 0.248636I
b = 0.688415 + 0.412207I
8.39396 3.98589I 0
u = 0.573087 + 1.142630I
a = 0.921485 0.642704I
b = 0.056200 + 1.252430I
10.8112 10.3483I 0
u = 0.573087 1.142630I
a = 0.921485 + 0.642704I
b = 0.056200 1.252430I
10.8112 + 10.3483I 0
u = 0.660173 + 1.105650I
a = 2.07363 0.69473I
b = 0.703524 + 1.121920I
0.9191 14.2325I 0
u = 0.660173 1.105650I
a = 2.07363 + 0.69473I
b = 0.703524 1.121920I
0.9191 + 14.2325I 0
u = 1.056470 + 0.736775I
a = 1.048320 0.512228I
b = 0.633156 0.779153I
0.82056 + 1.15724I 0
u = 1.056470 0.736775I
a = 1.048320 + 0.512228I
b = 0.633156 + 0.779153I
0.82056 1.15724I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.665628 + 1.136790I
a = 0.483282 + 1.020280I
b = 0.916919 + 0.529397I
3.97588 12.42400I 0
u = 0.665628 1.136790I
a = 0.483282 1.020280I
b = 0.916919 0.529397I
3.97588 + 12.42400I 0
u = 0.690235 + 1.138730I
a = 1.81858 + 0.59872I
b = 0.596895 0.937188I
0.95043 + 6.66404I 0
u = 0.690235 1.138730I
a = 1.81858 0.59872I
b = 0.596895 + 0.937188I
0.95043 6.66404I 0
u = 0.142734 + 0.640869I
a = 1.26726 2.96524I
b = 0.385243 + 0.991777I
5.12697 1.48065I 1.36691 + 1.15477I
u = 0.142734 0.640869I
a = 1.26726 + 2.96524I
b = 0.385243 0.991777I
5.12697 + 1.48065I 1.36691 1.15477I
u = 0.676032 + 1.172660I
a = 2.04749 + 0.72412I
b = 0.694637 1.112980I
5.7675 18.3493I 0
u = 0.676032 1.172660I
a = 2.04749 0.72412I
b = 0.694637 + 1.112980I
5.7675 + 18.3493I 0
u = 1.046010 + 0.871725I
a = 1.55072 + 0.08520I
b = 0.630633 + 0.895668I
1.17577 + 6.10865I 0
u = 1.046010 0.871725I
a = 1.55072 0.08520I
b = 0.630633 0.895668I
1.17577 6.10865I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.046045 + 1.397350I
a = 0.620332 0.655665I
b = 0.595969 + 1.058400I
10.18760 + 8.91972I 0
u = 0.046045 1.397350I
a = 0.620332 + 0.655665I
b = 0.595969 1.058400I
10.18760 8.91972I 0
u = 0.553712 + 0.202731I
a = 0.528223 + 0.679720I
b = 0.082580 + 1.072770I
2.30024 + 1.90304I 2.77161 4.23290I
u = 0.553712 0.202731I
a = 0.528223 0.679720I
b = 0.082580 1.072770I
2.30024 1.90304I 2.77161 + 4.23290I
u = 0.71297 + 1.23459I
a = 0.441416 0.393776I
b = 0.601821 0.671597I
3.40579 + 3.89060I 0
u = 0.71297 1.23459I
a = 0.441416 + 0.393776I
b = 0.601821 + 0.671597I
3.40579 3.89060I 0
u = 0.65165 + 1.33860I
a = 1.43997 0.64498I
b = 0.610272 + 0.961830I
4.27418 + 8.71872I 0
u = 0.65165 1.33860I
a = 1.43997 + 0.64498I
b = 0.610272 0.961830I
4.27418 8.71872I 0
u = 0.429540 + 0.149646I
a = 0.296500 + 0.074645I
b = 0.610223 + 0.842011I
0.92491 + 2.40324I 3.00262 3.56693I
u = 0.429540 0.149646I
a = 0.296500 0.074645I
b = 0.610223 0.842011I
0.92491 2.40324I 3.00262 + 3.56693I
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.262708 + 0.122966I
a = 4.95031 + 0.65441I
b = 0.547714 + 1.002260I
5.18066 1.75072I 0.73959 + 1.99347I
u = 0.262708 0.122966I
a = 4.95031 0.65441I
b = 0.547714 1.002260I
5.18066 + 1.75072I 0.73959 1.99347I
u = 0.249622
a = 1.35178
b = 0.346594
0.758713 13.4350
15
II. I
u
2
= hb + 1, 3a 3u + 4, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
5
=
1
u 1
a
3
=
u
u 1
a
1
=
1
0
a
11
=
u
4
3
1
a
10
=
u
1
3
1
a
7
=
u +
2
3
1
a
8
=
u
1
3
1
a
4
=
4
9
u
1
9
1
3
u
1
3
a
9
=
2u
5
3
2
a
12
=
u
4
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
116
9
u + 19
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
3
9(9u
2
3u + 1)
c
4
9(9u
2
6u + 4)
c
6
, c
7
, c
8
c
9
(u + 1)
2
c
10
, c
12
(u 1)
2
c
11
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
2
+ y + 1
c
3
81(81y
2
+ 9y + 1)
c
4
81(81y
2
+ 36y + 16)
c
6
, c
7
, c
8
c
9
, c
10
, c
12
(y 1)
2
c
11
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.833333 + 0.866025I
b = 1.00000
1.64493 + 2.02988I 12.5556 11.1621I
u = 0.500000 0.866025I
a = 0.833333 0.866025I
b = 1.00000
1.64493 2.02988I 12.5556 + 11.1621I
19
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
103
+ 44u
102
+ ··· + 1510u 81)
c
2
(u
2
+ u + 1)(u
103
+ 2u
102
+ ··· 50u 9)
c
3
81(9u
2
3u + 1)(9u
103
132u
102
+ ··· + 8034u 2563)
c
4
81(9u
2
6u + 4)(9u
103
+ 87u
102
+ ··· 19058u 1196)
c
5
(u
2
u + 1)(u
103
+ 2u
102
+ ··· 50u 9)
c
6
((u + 1)
2
)(u
103
3u
102
+ ··· + 3u 1)
c
7
, c
8
((u + 1)
2
)(u
103
+ 3u
102
+ ··· 3u 1)
c
9
((u + 1)
2
)(u
103
+ 37u
102
+ ··· + 13u 1)
c
10
((u 1)
2
)(u
103
3u
102
+ ··· + 3u 1)
c
11
u
2
(u
103
5u
102
+ ··· + 648u 108)
c
12
((u 1)
2
)(u
103
+ 3u
102
+ ··· 3u 1)
20
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
103
+ 32y
102
+ ··· + 1346818y 6561)
c
2
, c
5
(y
2
+ y + 1)(y
103
+ 44y
102
+ ··· + 1510y 81)
c
3
6561(81y
2
+ 9y + 1)
· (81y
103
+ 11916y
102
+ ··· + 184129610y 6568969)
c
4
6561(81y
2
+ 36y + 16)
· (81y
103
+ 11295y
102
+ ··· + 143925548y 1430416)
c
6
, c
10
((y 1)
2
)(y
103
+ 37y
102
+ ··· + 13y 1)
c
7
, c
8
, c
12
((y 1)
2
)(y
103
+ 97y
102
+ ··· + 13y 1)
c
9
((y 1)
2
)(y
103
+ 45y
102
+ ··· 379y 1)
c
11
y
2
(y
103
+ 15y
102
+ ··· 153576y 11664)
21