10
14
(K10a
33
)
A knot diagram
1
Linearized knot diagam
8 9 6 10 1 3 2 7 4 5
Solving Sequence
1,6
5 10 4 3 7 9 2 8
c
5
c
10
c
4
c
3
c
6
c
9
c
2
c
8
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
28
u
27
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
28
u
27
+ · · · 2u 1i
(i) Arc colorings
a
1
=
0
u
a
6
=
1
0
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
2u
2
a
3
=
u
4
3u
2
+ 1
u
4
2u
2
a
7
=
u
8
5u
6
+ 7u
4
2u
2
+ 1
u
8
4u
6
+ 4u
4
a
9
=
u
3
+ 2u
u
5
3u
3
+ u
a
2
=
u
12
7u
10
+ 17u
8
16u
6
+ 6u
4
5u
2
+ 1
u
14
+ 8u
12
23u
10
+ 28u
8
14u
6
+ 6u
4
3u
2
a
8
=
u
21
12u
19
+ ··· 8u
3
+ 3u
u
21
11u
19
+ ··· 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
26
+ 60u
24
384u
22
4u
21
+ 1364u
20
+ 48u
19
2940u
18
236u
17
+ 4000u
16
+ 608u
15
3604u
14
884u
13
+ 2428u
12
+ 784u
11
1376u
10
560u
9
+
576u
8
+ 384u
7
180u
6
148u
5
+ 40u
4
+ 52u
3
4u
2
16u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
28
u
27
+ ··· + u
2
1
c
2
u
28
+ u
27
+ ··· u 2
c
3
, c
6
u
28
5u
27
+ ··· + 20u 7
c
4
, c
5
, c
9
c
10
u
28
u
27
+ ··· 2u 1
c
8
u
28
+ 13u
27
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
28
+ 13y
27
+ ··· 2y + 1
c
2
y
28
3y
27
+ ··· 109y + 4
c
3
, c
6
y
28
+ 17y
27
+ ··· + 118y + 49
c
4
, c
5
, c
9
c
10
y
28
31y
27
+ ··· 2y + 1
c
8
y
28
+ 5y
27
+ ··· 26y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.586405 + 0.574893I
1.11175 + 8.20859I 6.53568 8.40980I
u = 0.586405 0.574893I
1.11175 8.20859I 6.53568 + 8.40980I
u = 0.543996 + 0.566433I
3.04585 3.16640I 3.13756 + 4.02500I
u = 0.543996 0.566433I
3.04585 + 3.16640I 3.13756 4.02500I
u = 0.755212 + 0.133146I
3.40408 3.35246I 13.3032 + 5.3092I
u = 0.755212 0.133146I
3.40408 + 3.35246I 13.3032 5.3092I
u = 0.430218 + 0.577744I
3.38107 0.75823I 1.91828 + 3.18448I
u = 0.430218 0.577744I
3.38107 + 0.75823I 1.91828 3.18448I
u = 0.567490 + 0.434707I
1.58402 + 1.32970I 10.44616 3.85928I
u = 0.567490 0.434707I
1.58402 1.32970I 10.44616 + 3.85928I
u = 0.376046 + 0.601172I
1.72778 4.19313I 4.61655 + 2.23475I
u = 0.376046 0.601172I
1.72778 + 4.19313I 4.61655 2.23475I
u = 0.561801
0.921591 10.5330
u = 1.45325 + 0.12481I
4.10153 + 1.71282I 8.00356 2.41214I
u = 1.45325 0.12481I
4.10153 1.71282I 8.00356 + 2.41214I
u = 1.48911 + 0.14533I
2.88101 + 3.25978I 6.00000 3.24223I
u = 1.48911 0.14533I
2.88101 3.25978I 6.00000 + 3.24223I
u = 1.54219 + 0.16548I
3.89171 + 5.80125I 6.94144 3.19136I
u = 1.54219 0.16548I
3.89171 5.80125I 6.94144 + 3.19136I
u = 0.144411 + 0.424497I
0.54493 + 1.50370I 4.95413 4.12502I
u = 0.144411 0.424497I
0.54493 1.50370I 4.95413 + 4.12502I
u = 1.55614 + 0.12966I
8.73279 3.39810I 13.35777 + 1.97434I
u = 1.55614 0.12966I
8.73279 + 3.39810I 13.35777 1.97434I
u = 1.56158
8.21476 10.3100
u = 1.55803 + 0.17307I
6.03932 10.93770I 10.01109 + 7.20566I
u = 1.55803 0.17307I
6.03932 + 10.93770I 10.01109 7.20566I
u = 1.59109 + 0.02596I
11.35240 + 3.87127I 14.4294 3.8096I
u = 1.59109 0.02596I
11.35240 3.87127I 14.4294 + 3.8096I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
28
u
27
+ ··· + u
2
1
c
2
u
28
+ u
27
+ ··· u 2
c
3
, c
6
u
28
5u
27
+ ··· + 20u 7
c
4
, c
5
, c
9
c
10
u
28
u
27
+ ··· 2u 1
c
8
u
28
+ 13u
27
+ ··· 2u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
28
+ 13y
27
+ ··· 2y + 1
c
2
y
28
3y
27
+ ··· 109y + 4
c
3
, c
6
y
28
+ 17y
27
+ ··· + 118y + 49
c
4
, c
5
, c
9
c
10
y
28
31y
27
+ ··· 2y + 1
c
8
y
28
+ 5y
27
+ ··· 26y + 1
7