12a
0197
(K12a
0197
)
A knot diagram
1
Linearized knot diagam
3 5 10 6 2 1 12 11 4 9 8 7
Solving Sequence
4,9
10 11 3 8 12 7 1 6 5 2
c
9
c
10
c
3
c
8
c
11
c
7
c
12
c
6
c
4
c
2
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
34
+ u
33
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
34
+ u
33
+ · · · u + 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
11
=
u
2
+ 1
u
2
a
3
=
u
u
3
+ u
a
8
=
u
4
+ u
2
+ 1
u
4
a
12
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
7
=
u
8
+ u
6
+ 3u
4
+ 2u
2
+ 1
u
8
+ 2u
4
a
1
=
u
10
+ u
8
+ 4u
6
+ 3u
4
+ 3u
2
+ 1
u
10
+ 3u
6
+ u
2
a
6
=
u
12
+ u
10
+ 5u
8
+ 4u
6
+ 6u
4
+ 3u
2
+ 1
u
12
+ 4u
8
+ 3u
4
a
5
=
u
25
2u
23
+ ··· 6u
3
u
u
25
u
23
+ ··· 3u
5
+ u
a
2
=
u
14
+ u
12
+ 6u
10
+ 5u
8
+ 10u
6
+ 6u
4
+ 4u
2
+ 1
u
16
+ 2u
14
+ 6u
12
+ 10u
10
+ 10u
8
+ 12u
6
+ 4u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
32
+4u
31
+12u
30
+8u
29
+64u
28
+52u
27
+144u
26
+88u
25
+396u
24
+268u
23
+676u
22
+
376u
21
+ 1216u
20
+ 696u
19
+ 1564u
18
+ 784u
17
+ 1956u
16
+ 948u
15
+ 1836u
14
+ 812u
13
+
1576u
12
+620u
11
+992u
10
+360u
9
+528u
8
+132u
7
+176u
6
+40u
5
+40u
4
8u
3
+12u
2
+8u+2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
34
+ 13u
33
+ ··· + 5u + 1
c
2
, c
5
u
34
+ u
33
+ ··· 3u + 1
c
3
, c
9
u
34
u
33
+ ··· + u + 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
34
5u
33
+ ··· 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
34
+ 17y
33
+ ··· + 97y + 1
c
2
, c
5
y
34
+ 13y
33
+ ··· + 5y + 1
c
3
, c
9
y
34
+ 5y
33
+ ··· + 5y + 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
34
+ 49y
33
+ ··· + 25y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.407066 + 0.834658I
1.03103 + 6.41382I 3.82648 9.99401I
u = 0.407066 0.834658I
1.03103 6.41382I 3.82648 + 9.99401I
u = 0.760333 + 0.772672I
4.35750 + 1.50466I 0.22640 2.73870I
u = 0.760333 0.772672I
4.35750 1.50466I 0.22640 + 2.73870I
u = 0.802505 + 0.764339I
5.87304 + 3.61528I 2.19692 2.52505I
u = 0.802505 0.764339I
5.87304 3.61528I 2.19692 + 2.52505I
u = 0.348058 + 0.805715I
1.73732 1.33000I 6.22240 + 4.49160I
u = 0.348058 0.805715I
1.73732 + 1.33000I 6.22240 4.49160I
u = 0.718616 + 0.868268I
4.04046 + 3.96737I 1.07736 3.54418I
u = 0.718616 0.868268I
4.04046 3.96737I 1.07736 + 3.54418I
u = 0.532857 + 0.661540I
2.87697 + 1.94550I 4.75114 5.05594I
u = 0.532857 0.661540I
2.87697 1.94550I 4.75114 + 5.05594I
u = 0.786286 + 0.843735I
9.58813 2.89200I 5.67849 + 3.04986I
u = 0.786286 0.843735I
9.58813 + 2.89200I 5.67849 3.04986I
u = 0.733686 + 0.898055I
5.42158 9.27208I 0.93638 + 8.29994I
u = 0.733686 0.898055I
5.42158 + 9.27208I 0.93638 8.29994I
u = 0.034944 + 0.814547I
3.24779 2.53240I 10.48060 + 3.91593I
u = 0.034944 0.814547I
3.24779 + 2.53240I 10.48060 3.91593I
u = 0.560898 + 0.384252I
0.40745 2.89261I 2.01184 + 2.94776I
u = 0.560898 0.384252I
0.40745 + 2.89261I 2.01184 2.94776I
u = 0.943944 + 0.946247I
15.2642 1.6043I 0.05765 + 2.13250I
u = 0.943944 0.946247I
15.2642 + 1.6043I 0.05765 2.13250I
u = 0.951432 + 0.943931I
17.0241 3.9437I 2.23878 + 2.32500I
u = 0.951432 0.943931I
17.0241 + 3.9437I 2.23878 2.32500I
u = 0.933375 + 0.963881I
15.2051 5.2894I 0.15464 + 2.30279I
u = 0.933375 0.963881I
15.2051 + 5.2894I 0.15464 2.30279I
u = 0.934696 + 0.971112I
16.9325 + 10.8664I 2.05453 6.71778I
u = 0.934696 0.971112I
16.9325 10.8664I 2.05453 + 6.71778I
u = 0.946814 + 0.960125I
18.2073 + 3.4743I 5.57472 2.21410I
u = 0.946814 0.960125I
18.2073 3.4743I 5.57472 + 2.21410I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.258906 + 0.569344I
0.245296 0.924586I 4.90419 + 7.15131I
u = 0.258906 0.569344I
0.245296 + 0.924586I 4.90419 7.15131I
u = 0.471008 + 0.235567I
0.14514 1.57341I 1.50693 + 3.59818I
u = 0.471008 0.235567I
0.14514 + 1.57341I 1.50693 3.59818I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
u
34
+ 13u
33
+ ··· + 5u + 1
c
2
, c
5
u
34
+ u
33
+ ··· 3u + 1
c
3
, c
9
u
34
u
33
+ ··· + u + 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
34
5u
33
+ ··· 5u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
34
+ 17y
33
+ ··· + 97y + 1
c
2
, c
5
y
34
+ 13y
33
+ ··· + 5y + 1
c
3
, c
9
y
34
+ 5y
33
+ ··· + 5y + 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
34
+ 49y
33
+ ··· + 25y + 1
8