$10_{124} (K10n_{21})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle b + u, \ a + u + 1, \ u^2 + u - 1 \rangle$$

 $I_2^u = \langle b - u, \ a - u + 1, \ u^2 - 3u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 4 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle b + u, a + u + 1, u^2 + u - 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u-1 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u-1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u-1 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -15

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$u^2 + u - 1$
c_4, c_9	u^2
c_5, c_6	$u^2 - u - 1$
<i>C</i> ₇	$(u-1)^2$
c_8,c_{10}	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \ c_5, c_6$	$y^2 - 3y + 1$
c_4, c_9	y^2
c_7, c_8, c_{10}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -1.61803	-2.63189	-15.0000
b = -0.618034		
u = -1.61803		
a = 0.618034	-10.5276	-15.0000
b = 1.61803		

II.
$$I_2^u = \langle b - u, \ a - u + 1, \ u^2 - 3u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 3u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u - 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -3u + 1 \\ -4u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3u + 2 \\ -3u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -6u + 3 \\ -7u + 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 12u - 4 \\ 15u - 6 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3u + 1 \\ -25u + 10 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -15

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6	$u^2 + 3u + 1$
c_4, c_9	$u^2 - 8u - 4$
c_7, c_{10}	$u^2 - 4u - 1$
C ₈	$u^2 + 18u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6	$y^2 - 7y + 1$
c_4, c_9	$y^2 - 72y + 16$
c_7, c_{10}	$y^2 - 18y + 1$
c ₈	$y^2 - 322y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.381966		
a = -0.618034	-0.657974	-15.0000
b = 0.381966		
u = 2.61803		
a = 1.61803	7.23771	-15.0000
b = 2.61803		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$(u^2 + u - 1)(u^2 + 3u + 1)$
c_4, c_9	$u^2(u^2 - 8u - 4)$
c_5, c_6	$(u^2 - u - 1)(u^2 + 3u + 1)$
	$(u-1)^2(u^2-4u-1)$
c ₈	$(u+1)^2(u^2+18u+1)$
c_{10}	$(u+1)^2(u^2-4u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6	$(y^2 - 7y + 1)(y^2 - 3y + 1)$
c_4, c_9	$y^2(y^2 - 72y + 16)$
c_7, c_{10}	$(y-1)^2(y^2-18y+1)$
c_8	$(y-1)^2(y^2-322y+1)$