$6_2 \ (K6a_2)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 5 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^5 + u^4 + 2u^3 + u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u^2 4u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_2, c_3, c_6	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
<i>C</i> 5	$u^5 + 3u^4 + 4u^3 + u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_2, c_3, c_6	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_5	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.339110 + 0.822375I	-0.32910 + 1.53058I	-2.51511 - 4.43065I
u = 0.339110 - 0.822375I	-0.32910 - 1.53058I	-2.51511 + 4.43065I
u = -0.766826	-2.40108	-3.48110
u = -0.455697 + 1.200150I	-5.87256 - 4.40083I	-6.74431 + 3.49859I
u = -0.455697 - 1.200150I	-5.87256 + 4.40083I	-6.74431 - 3.49859I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_2, c_3, c_6	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
<i>C</i> ₅	$u^5 + 3u^4 + 4u^3 + u^2 - u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_2, c_3, c_6	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
<i>c</i> ₅	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$