

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 6 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^4 4u^2 4u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_2	$u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1$
c_3, c_5	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_6	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_2, c_6	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
u = 1.002190 - 0.295542I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
u = -0.428243 + 0.664531I	1.89061 - 0.92430I	3.71672 + 0.79423I
u = -0.428243 - 0.664531I	1.89061 + 0.92430I	3.71672 - 0.79423I
u = -1.073950 + 0.558752I	5.69302I	05.51057I
u = -1.073950 - 0.558752I	-5.69302I	0. + 5.51057I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
c_2	$u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1$
c_3,c_5	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_6	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_2, c_6	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$